Tính giá trị của biểu thức
132 x 2 chia 4 x 9
cho biểu thức A = (2 căn x +x chia x căn x -1 -1 chia căn x - 1 ) chia ( căn x + 2 chia x + căn x +1 )
a) tìm điều kiện xác định của biểu thức A
b) rút gọn biểu thức A
c) tính giá trị A khi x = 9-4 căn 5
d) tìm giá trị lớn nhất của A
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
: Tính giá trị biểu thức bằng cách hợp lí nhất: a, (132 x 6 - 66 x 12) x (132 x 6 + 66 ) b, 100 - 99 + 98 - 97 + 96 - 95 + .....+ 4 - 3 + 2
câu 1 tính giá trị biểu thức
a)4,19 x 50 - 132 : 2/3
b)637,38 : 18 x 2,5
c)56,32 - 13,4 x 2,4
d)2/5 :(4/5 - 1/2)
a/\(4,19\times50-132:\dfrac{2}{3}\)
\(=209,5-198\)
\(=11,5\)
b/\(637,38:18\times2,5\)
\(=35,41\times2,5\)
\(=88,525\)
c/\(56,32-13,4\times2,4\)
\(=56,32-32,16\)
\(=24,16\)
d/\(\dfrac{2}{5}:\left(\dfrac{4}{5}-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{5}:\dfrac{3}{10}\)
\(=\dfrac{4}{3}\)
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Tính giá trị của biểu thức: a) (-24) + x biết x = - 45; b) (-345) + y biết x = - 132;
tính giá trị của biểu thức:
12 + 7 x \((220 - 132 /4)\) - 98
12+7*(220-132/4)-98=12+7*(220-33)-98=12+7*187-98=12+1309-98=1223
Tính giá trị biểu thức : 198 : 2 x 4444 x 2 x 132 : 25 / 33 x 8888 : 5 x 66 : 125 x 5
Tính giá trị biểu thức : 198 : 2 x 4444 x 2 x 132 : 25 / 33 x 8888 : 5 x 66 : 125 x 5
Với giá trị nào của x thì giá trị của biểu thức x(x-5)/9-(x+5)/4 không nhỏ hơn giá trị của biểu thức (x-1)2/9 - (x+3)/3-(x-2)/2