Cho x-y=2014.Tính giá trị của biểu thức:
P=ax-2014/3x+y-4y+2014/3y+x
(x#-3y;y#-3x)
Cho x-y =2014 .tính giá trị của biểu thức
P= 4x-2014/3x+y - 4y+2014/3y+x
\(P=\frac{4x-2014}{3x+y}-\frac{4y+2014}{3y+x}\)
\(=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}\)
\(=1-1=0\)
Cho x > 2014, y > 2014 thoả mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2014}\). Tính giá trị của biểu thức: P= \(\frac{\sqrt{x+y}}{\sqrt{X-2014}+\sqrt{y-2014}}\)
tìm giá trị nhỏ nhất của biểu thức:P=|2013-x|+|2014-x|
Mấy bạn kia làm sai hết rồi !!
P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1
Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014
Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow\)\(Min_P=4027\)
Ta có :
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014+x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow Min_P=4027\)
Cho x>2014; y>2014 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2014}\)
tính giá trị biểu thức :
P=\(\frac{\sqrt{x+y}}{\sqrt{x-2014}+\sqrt{y-2014}}\)
à giờ mik mới thấy x, y hiện lên
khi nãy ko thấy
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
Cho x>0,y>0, z>0 thỏa mãn \(x^{2014}+y^{2014}+z^{2014}=3\) . Tính giá trị lớn nhất của biểu thức \(M=x^2+y^2+z^2\)
\(Vì\)\(x^{2014}\ge0;y^{2014}\ge0;z^{2014}\ge0\)
Mà \(x^{2014}+y^{2014}+z^{2014}=3\)
=>\(x^{2014}=1;y^{2014}=1;z^{2014}=1\)
=>x=1;y=1;z=1
=>M=1+1+1=3
Tính giá trị biểu thức
(X^2 - 3x + xy - 3y):( x+y) tại x= 4 y = 2014
điều kiện : \(x\ne-y;y\ne-x\)
\(\dfrac{x^2-3x+xy-3y}{x+y}=\dfrac{x\left(x-3\right)+y\left(x-3\right)}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x-3\right)}{x+y}=x-3=4-3=1\)
vậy \(\dfrac{x^2-3x+xy-3y}{x+y}=1\) với \(x=4;y=2014\)
Ta có : x -3 = 4 -3 = 1
Vậy tại x = 4 ; y=2014 thì GT của BT (x^2 - 3x + xy - 3y):(x+y) là bằng 1
Cho 3 số thực dương x, y, z. Tính giá trị lớn nhất của biểu thức:
P=\(\dfrac{x}{3x+y+z}+\dfrac{y}{3y+z+x}+\dfrac{z}{3z+x+y}\)
\(25P=\dfrac{x\left(2+3\right)^2}{2x+x+y+z}+\dfrac{y\left(2+3\right)^2}{2y+x+y+z}+\dfrac{z\left(2+3\right)^2}{2z+x+y+z}\)
\(25P\le x\left(\dfrac{2^2}{2x}+\dfrac{3^2}{x+y+z}\right)+y\left(\dfrac{2^2}{2y}+\dfrac{3^2}{x+y+z}\right)+z\left(\dfrac{2^2}{2z}+\dfrac{3^2}{x+y+z}\right)\)
\(25P\le6+\dfrac{9\left(x+y+z\right)}{x+y+z}=15\)
\(\Rightarrow P\le\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(x=y=z\)
BT1: Tìm Giá Trị nhỏ nhất của biểu thức:
A) S=5X2+9Y2-12XY+24X-48Y+2014
B) S=X2+Y2-XY+3X+3Y+20
BT2: cho X+2XY+2Y+8
Tìm GTNN của A= X2+4Y2
trước tiên bạn nên đưa về dạng tổng hai bình phương