bài 1:tìm x thuộc Z sao cho;
a,|x+5|< hoạc =2
b,(x2-20)(x2-15)(x2-10)(x2-5)<0
Bài 2:tìm tất cả các cặp số nguyên(m,n)thỏa mãn:
a,2m-2n=2048
b,3m+4n-mn=16
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Giúp mình với ~ Mình đang cần gấp!
Bài 1 : Tìm x thuộc Z sao cho (x - 7) . (x + 3) < 0
Bài 2 : Tìm n thuộc Z sao cho : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
@Chiyuki Fujito : Bài 2 là một đề bạn nhé !
Xin lỗi hiện tại t lm đc thêm mỗi bài 4 nx thôi ~~~
Bài 4 : Gọi cặp số nguyên cần tìm gôm 2 số a và b ( a,b là số nguyên )
Theo bài ra ta có ab = a + b
=> ab - a - b = 0
=> ab - a - b + 1 = 1
=> a (b - 1 ) - ( b - 1 ) = 1
=> ( a - 1 ) ( b - 1 ) = 1
\(\Rightarrow\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}\) hoặc \(\hept{\begin{cases}a-1=-1\\b-1=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\) hoặc \(\hept{\begin{cases}a=0\\b=0\end{cases}}\)
=> Các cặp số nguyên thỏa mãn đề bài là ( 2;2 ) ; ( 0 ; 0 )
Vậy các cặp số nguyên thỏa mãn đề bài là ( 2;2 ) ; ( 0 ; 0 )
@@ Học tốt
Xl nhé t chx có time nghĩ ra 2 câu kia ~~~ Trong ngày mai thì có thể đc ak lúc ấy c cs cần nx k
Bài 2 : Tìm n thuộc Z sao cho : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Có nghĩa là \(n-1⋮n+5\) và \(n+5⋮n-1\) ak ??
Bài 1 : Tìm n thuộc N* sao cho: n^2 + 9n -2 chia hết cho 11.
Bài 2: Tìm x thuộc Z sao cho x^3 - 8x^2 + 2x chia hết cho x^2 +1
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1: Tìm x thuộc N sao cho B=3x+1/x-1 nhận giá trị nguyên
Bài 2: Cho phân thức P= x^2 -9/x^2 -6x+ 9
a) Rút gọn P
b) Tìm x thuộc Z sao cho P nguyên
Bài 1:
Để B nguyên thì \(3x+1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(4\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{2;0;3;-1;5;-3\right\}\)
Bài 2:
a: Ta có: \(P=\dfrac{x^2-9}{x^2-6x+9}\)
\(=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{x+3}{x-3}\)
b: Để P nguyên thì \(x+3⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;1;6;0;9;-3\right\}\)
bài 3 tìm x thuộc Z sao cho :
a,1/8<x/40<1/5
b,-1/8<x/72<-1/36
a: \(\dfrac{1}{8}< \dfrac{x}{40}< \dfrac{1}{5}\)
=>\(\dfrac{5}{40}< \dfrac{x}{40}< \dfrac{8}{40}\)
=>5<x<8
mà x nguyên
nên \(x\in\left\{6;7\right\}\)
b: \(\dfrac{-1}{8}< \dfrac{x}{72}< \dfrac{-1}{36}\)
=>\(\dfrac{-9}{72}< \dfrac{x}{72}< \dfrac{-2}{72}\)
=>-9<x<-2
mà x nguyên
nên \(x\in\left\{-8;-7;-6;-5;-4;-3\right\}\)
bài 62: tìm x thuộc z sao cho :
a, 3x+2chia hết cho x-1
b, x^2+2x -7 chia hết cho x+2
\(3x+2⋮x-1\)
\(\Leftrightarrow3\left(x-1\right)+5⋮x-1\)
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\inƯ\left(5\right)\)
\(\Leftrightarrow\left(x-1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{-4;0;2;6\right\}\)
Vậy để \(3x+2⋮x-1\) thì \(x\in\left\{-4;0;2;6\right\}\)
b) \(x^2+2x-7⋮x+2\)
\(\Leftrightarrow x\left(x+2\right)-7⋮x+2\)
\(\Leftrightarrow7⋮x+2\)
\(\Leftrightarrow\left(x+2\right)\inƯ\left(7\right)\)
\(\Leftrightarrow\left(x+2\right)\in\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{-9;-3;-1;5\right\}\)
Vậy để \(x^2+2x-7⋮x+2\) thì \(x\in\left\{-9;-3;-1;5\right\}\)
bài 1:chứng tỏ rằng
-(a+b)=-a+b với a,b thuộc Z
bài 2:tìm x,y thuộc Z sao cho
|x|+|y|=5
bài 3:tính nhanh
-2017+2016-2015+....-3+2-1
Bài 1 : Tìm x,y thuộc Z sao cho:
b) |x−8| + |y + 2|=2
Bài 1 : tìm x , y thuộc z :
a) x/3 - 4/y = 1/5
b) 3/11 + x/22 = y/11
Bài 2 : tìm n thuộc z sao cho để các phân số sau có giá trị nguyên:
A= 3n+4/ n - 1.
B= 6n-3/ 3n + 1