Tìm x, y biết rằng :
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
tìm x,y biết rằng: \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
=> \(\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
=> \(\left(x^2-2x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)
=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
<=> \(x-\frac{1}{x}=0;y-\frac{1}{y}=0\)
=> \(x^2=1;y^2=1\)
=> x = 1 hoặc -1
y = 1 hoặc -1
tìm số tự nhiên x , y biết rằng :
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
BÀI 1) TÌM 2 SỐ X,Y BIẾT \(\frac{x}{5}=\frac{y}{3}\) VÀ \(x^2-y^2=4\left(x,y>0\right)\)
BÀI 2) TÌM CÁC SỐ X,Y,Z BIẾT RẰNG \(\frac{1}{2}.x=\frac{2}{3}.y=\frac{3}{4}.z\) VÀ X-Y=15
GIÚP MÌNH VS AI NHANH DC 4 TÍCH NHA
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
bài 1: tìm 3 số x, y, z, biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
bài 2: tìm 2 số x và y, biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 10
Bài 1:
\(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\) và x + y - z = 10
\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\)
\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}\) = \(\frac{z}{15}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2
=> \(\frac{x}{8}\) = 2 --> x = 16
\(\frac{y}{12}=2\) --> y = 24
\(\frac{z}{15}=2\) --> z = 30
Vậy x = 16 ; y = 24 ; z = 30
Bài 2:
\(\frac{x}{2}=\frac{y}{5}\) và x . y = 10
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có: x = 2 . k ; y = 5 . k
x . y = 10 => 2k . 5k = 10
=> 10 . \(^{k^2}\) = 10
=> \(^{k^2}\) = 1 --> k = -1 hoặc k = 1
k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5
k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5
Bài 1:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Bài 2:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
Có: xy=10
\(\Leftrightarrow2k\cdot5k=10\)
\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
Với k=1 thì x=2 ; y=5
Với k=-1 thì x=-2 ; y=-5
Bài 1 :
Ta có:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Nên x = 2.8 = 16
y = 2.12 = 24
z= 2. 15 = 30
Vậy ...
Bài 2 :
Đặt k = . Ta có x = 2k, y = 5k
Từ xy=10. suy ra 2k.5k = 10 => 10 = 10 => = 1 => k = ± 1
Với k = 1 ta được = 1 suy ra x = 2, y = 5
Với k = - 1 ta được = -1 suy ra x = -2, y = -5
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Tìm x,y,x biết rằng:
(x-\(\frac{1}{2}\))(y+\(\frac{1}{3}\))(z-2)=0 và x+2=y+3=z+4
(x-\(\frac{1}{2}\) )(y+\(\frac{1}{3}\) )(z-2)=0 và x+2=y+3=z+4
<=> x-\(\frac{1}{2}\)=0 hoặc y+\(\frac{1}{3}\)=0 hoặc z-2=0
+,với z-2=0
=>z=2
=>x+2=y+3=2+4
=>x+2=y+3=6
=. x=4;y=3
+,x-\(\frac{1}{2}\)=0
=>x=\(\frac{1}{2}\)
=>\(\frac{1}{2}\)+2=y+3=z+4
=>\(\frac{5}{2}\)=y+3=z+4
=>y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)
+,với y+\(\frac{1}{3}\)=0
=>y=\(\frac{-1}{3}\)
=>x+2=\(\frac{-1}{3}\)+3=z+4
=>x+2=\(\frac{8}{3}\)=z+4
=>x=\(\frac{2}{3}\);z=\(\frac{4}{3}\)
Vậy khi x-\(\frac{1}{2}\)=0 thì x=\(\frac{1}{2}\);y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)
khi y+\(\frac{1}{3}\)=0 thì x=\(\frac{2}{3}\);y=\(\frac{-1}{3}\);z=\(\frac{4}{3}\)
khi z-2=0 thì x=4;y=3;z=2
Hiếu Thông Minh ơi giúp mình câu hỏi mình vừa đăng nữa nhé cảm ơn bạn mình sẽ k nhiều cho bạn !!!!!!!!