CMR :nếu: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)thì a=c hoặc \(a+b+c+d=0\left(c+d\ne0\right)\)
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Cho\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\left(c+d\ne0\right)\)
CMR: \(a+b+c+d=0\)hoặc \(a=c\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\left[c+d\ne0\right]\)
\(\left[a+b\right]\left[a+d\right]=\left[b+c\right]\left[c+d\right]\)
\(a^2+ad+ab+bd=bc+bd+c^2+cd\)
\(a^2+ad+ab=bc+c^2+cd\)
\(a^2+ad+ab-bc-c^2-cd=0\)
\(\left[a+c\right]\left[a-c\right]+d\left[a-c\right]+b\left[a-c\right]=0\)
\(\left[a-c\right]\left[a+b+c+d\right]=0\)
\(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}}\)
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\left(a,b,c\ne0;a\ne b,c\ne d\right)\).CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow VT=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\Rightarrow VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
b) \(2< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+c\right)}{b+c+d}+\frac{\left(c+d\right)}{c+d+a}+\frac{\left(d+a\right)}{d+a+b}< 4\)
Cho a,b,c,d > 0 CMR :
a)\(A=\frac{\left(a+c\right)}{a+b}+\frac{\left(b+d\right)}{b+c}+\frac{\left(c+a\right)}{c+d}+\frac{\left(d+b\right)}{d+a}4\ge\)
b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\); \(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)
Cộng các bĐT trên
=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có Với \(0< \frac{x}{y}< 1\)
=> \(\frac{x}{y}< \frac{x+z}{y+z}\)
Áp dụng ta có
\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)
Vậy 2<B<3
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{3.a^6+c^6}{3.b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\)với \(b+d\ne0\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+c}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (1)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\)(2)
Từ (1) ; (2) \(\Rightarrow\frac{\left(a+c\right)^6}{\left(b+d\right)^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (đpcm)
Cho
\(\frac{a+b}{c+d}=\frac{c+d}{d+a}\)
CMR \(a=c\) và \(a+b+c+d=0\)\(\left(với:b+c\ne0;d+a\ne0\right)\)