\(\frac{2}{11.16};\frac{2}{16.21};\frac{2}{21.26};...........\)Tìm phân số thứ 45 của dãy
Tính:
A=\(\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+.......+\frac{5^2}{56.69}\)
\(A=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{56.61}\right)\))
\(A=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(A=5.\frac{50}{671}\)
\(A=\frac{250}{671}\)
Chúc em học tốt^^
\(A=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+.....+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+.....+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+...+\frac{5^2}{56.61}\)
\(A=5\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(A=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(A=5.\frac{50}{671}\)
\(A=\frac{250}{671}\)
tính nhanh
Q=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+.......+\frac{5^2}{26.31}\)
Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)
Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)
Q=5(1/1-1/31)
Q=5x30/31
Q=150/31
\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
CÒN ĐÔU PN TỰ LÀM NHA
\(Q=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(Q=5\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{26.31}\right)\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
\(Q=5.\frac{31}{32}\)
\(Q=\frac{155}{32}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
Ta có:
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}\)
Vậy \(A=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\) =?
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{5.30}{31}=\frac{150}{31}\)
(x+3).(2y-1)=9
S=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
Tìm x , biết : \(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)
\(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)
\(x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}=1\)
\(x+1-\frac{1}{16}=1\)
\(x+\frac{15}{16}=1\)
\(x=1-\frac{15}{16}\)
\(x=\frac{1}{16}\)
Tinh
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+....+\(\frac{5^2}{26.31}\)=\(\frac{25}{1.6}\)+\(\frac{25}{6.11}\)+.....+\(\frac{25}{26.31}\)
\(\frac{1}{5}\)A=\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+....+\(\frac{5}{26.31}\)=1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+....+\(\frac{1}{26}\)-\(\frac{1}{31}\)=1-\(\frac{1}{31}\)=\(\frac{30}{31}\)
A=\(\frac{30}{31}\):\(\frac{1}{5}\)
A=\(\frac{150}{31}\)
B= \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
Vì: 52=5.5
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(1-\frac{1}{31}\right)\)
= \(5.\frac{30}{31}\)
= \(\frac{150}{31}\)
\(B=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(B=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(B=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(B=5\left(1-\frac{1}{31}\right)\)(TỐI GIẢN CÁC PHÂN SỐ GIỐNG NHAU)
\(B=5.\frac{30}{31}\)
\(B=\frac{150}{31}\)
trả lời nhah ha, mk chỉ chọn có 4 câu trả lời thui!
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
Tính tổng trên bằng cách hợp lí
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)