C = 1.2.3.4.....2016.(1/2+1/3+1/4+...1/2016) Hỏi C có chia hết cho 2017 không ? vì sao
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
4^1+4^2+4^3+.....+4^2016 chia hết cho 5 không ? Vì sao?
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
Cho tổng A = 1+2+22+23+24+...+22016.
a. Tổng A có chia hết cho 7 không?Vì sao?
b. Tổng A có chia hết cho 31 không?Vì sao?
a.Tổng 20162015+20152016 có chia hết cho 5 không? Vì sao?
b. 94260-35133 có chia hết cho 5 không?Vì sao?
c. 995-984+973-962 chia hết cho 2 và 5 không?Vì sao?
Cho P=\(1^{2017}+2^{2017}+3^{2017}+...+2016^{2017}\), Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
\(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
\(=2016.504\left(mod2^4\right)\)
\(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
\(a^n+b^n\) chia hết cho a+b với n lẻ
áp dụng cái trên là đc nhé bạn
Bài 1:Tìm các chữ số a,b sao cho:7a4b (gạch ngang đầu) chia hết cho cả 4 và 7. Bài 2:Tìm các số tnhien a,b thỏa mãn:a+2b=49 và mở ngoặc vuông a,b đọng ngoặc vuông + (a.b)=56 Bài 3:Chứng minh rằng:A=(2016+2016^2+2016^3+...+2016^2016) chia hết cho 2017 Bài 4:Chứng minh rằng:A=4+4^2+4^3+....+4^2016 chia hết cho 21?240?
Bài 5:Từ 6 chữ số 0;1;2;3;4;5 hãy viết tất cả các số có 3 chữ số khác nhau chia hêt cho cả 3 và 5.
Bài 6
a) (x-3).(x+5) <0 b)(x+1).(x-2) >0 c) 2x-x^2 >0 d) (x-1)^2=9 e) (x+1).(x-2) =0 g) 3.x^2=75 Bài 7:Tìm các số tự nhiên x,y sao cho; a)(2x+1).(y-3)=15 b)(x+1).(2y-1)=10 Bài 8:Tìm x thuộc N sao cho: a)(x+13) chia hết (x+2) b)(x+5) chia hết (x-1) Các bạn giúp Dii sớm rồi Dii tickk cho nha
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi
Cho \(A=2015^{2016}+2016^{2015}\) và \(B=1+2^2+3^2+4^2+...+2016^2\)
\(A\times B\)có chia hết cho\(5\)không? Vì sao
vì chữ số tận cùng của 2015 là 5 nên 2015 nhân với số nào thì tận cùng vẫn là 5
2016 tận cùng là 6 nên 2016 nhân với số nào tận cùng vẫn là 6
A=5+6=11
B= tan cung la 6
AxB=11x6=66
66 ko chia het cho 5