Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}.\) CMR \(A< \frac{3}{4}.\)
Bài 1:CMR A<1
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)
Cho A=\(1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{2010^2}\)
CMR : A > \(\frac{1}{2010}\)
GIÚP MIK VS!!
\(A=1-\frac{1}{2^2}-...-\frac{1}{2010^2}\)
\(=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
Ta có: \(A=1-\left(\frac{1}{2^2}+...+\frac{1}{2010^2}\right)\)\(>\)\(B=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=1-\left(1-\frac{1}{2010}\right)=1-1+\frac{1}{2010}=\frac{1}{2010}\)
1.Tính tổng
\(S=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)
2.Tìm x
\(5^x+5^{x+2}=650\)
3.CMR
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
4. Cho \(A=\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2010}+\frac{1}{2011}\)
So sánh A và B
2.CMR \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2010^2}< \frac{3}{4}\)
Thôi, cho phép mình góp ý bài mình đã làm bằng cách đơn giản hơn nha ^^.
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có:
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(=A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow A< 1-\frac{1}{2010}\)
\(\Rightarrow A< 1\)
\(\Rightarrow A< \frac{3}{4}\)
Có: \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\);...;\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=1-\frac{1}{2010}=\frac{2009}{2010}\)Mà \(\frac{2009}{2010}>\frac{3}{4}\) -> Sai đề
Với mọi k ta luôn có \(k^2\ge k^2-1=\left(k-1\right)\left(k+1\right)\)
\(\Rightarrow\frac{1}{k^2}\le\frac{1}{\left(k-1\right)\left(k+1\right)}=\frac{1}{2}.\left(\frac{1}{k-1}-\frac{1}{k+1}\right)\)
Áp dụng vào ta suy ra
\(2A\le\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{2009}-\frac{1}{2011}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{3}-\frac{1}{2010}-\frac{1}{2011}< \frac{3}{2}\)
cho A=\(\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}\)
tính\(\frac{a}{b}\)
b.giả sử 2^2010 có m chữ số và 5^2010 có n chữ số.tính m+n
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
\(\frac{A}{B}\)=2011
CMR: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}}\)
Tính :
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)
\(A=\frac{1}{2011}\)
Câu 1: Cho
\(A=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2010^2}\)
CMR : \(A>\frac{1}{2010}\)
Câu 2: Cho
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CMR : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(a,b,c\ne0\right)\)
A=1-(1/2^2+1/3^2+...+1/2010^2)
A=1-(1/2*2+1/3*3+...+1/2010*2010)>1-(1/2*3+1/3*4+...+1/2010*2011)
A>1-(1/2-1/3+1/3-1/4+...+1/2010-1/2011)
A>1-(1/2-1/2011)=2013/4022>1/2010
=>A>1/2010
Sai thì em xin lỗi nhé
CMR \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \frac{89}{45}\)
Xét với n là số tự nhiên không nhỏ hơn 1 , ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng điều trên :
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \)
\(< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\right)=2\left(1-\frac{1}{\sqrt{2010}}\right)< \)
\(< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)