Tính nhanh
1/3 + 3/4 + 2/3 + 1/4
tính nhanh : 1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4 =
1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4
= ( 1 + 2 + 3 + 4 ) x 4
= 10 x 4
= 40
nhớ nak , ko thj mk buồn lắm đó !
1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4
= 1 x 4 + 2 x 4 + 3 x 4 + 4 x 4
= 4 + 8 + 12 + 16
= 30
tính nhanh a 1/3 + 3/4 + 2/3 + 1/4 b 3/4 + 3/5 + 2 phần 8 + 4/10
a. \(\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\dfrac{3}{4}=1+\dfrac{3}{4}=\dfrac{7}{4}\)
b. \(\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{2}{8}+\dfrac{4}{10}=\left(\dfrac{3}{4}+\dfrac{2}{8}\right)+\left(\dfrac{3}{5}+\dfrac{4}{10}\right)=1+1=2\)
a ) `1/3 + 3/4 + 2/3 + 1/4 `
`= (1/3 + 2/3 )+ (3/4 + 1/4)`
`= 1 + 1 `
`= 2
b 3/4 + 3/5 + 2 phần 8 + 4/10`
`= (3/4 + 2/8 ) + ( 3/5 + 4/10 ) `
`= 1 + 1 `
`= 2`
4(3^2+1)(3^4+1)(3^8+1)(3^16+1)
Tính nhanh
$4(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)$
$=\dfrac12\cdot(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)$
$=\dfrac12\cdot(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)$
$=\dfrac12\cdot(3^8-1)(3^8+1)(3^{16}+1)$
$=\dfrac12\cdot(3^{16}-1)(3^{16}+1)$
$=\dfrac{3^{32}-1}{2}$
Tính nhanh 5×(-2)²×(3/4)²-4×(-2)×3/4+1/2×(-2)-3×3/4
\(=5\cdot4\cdot\dfrac{9}{16}-4\cdot\left(-2\right)\cdot\dfrac{3}{4}+\dfrac{1}{2}\cdot\left(-2\right)-\dfrac{9}{4}\)
\(=5\cdot\dfrac{9}{4}+4\cdot4\cdot\dfrac{3}{4}-1-\dfrac{9}{4}\)
\(=\dfrac{45}{4}-\dfrac{9}{4}+4\cdot3-1=9+12-1=20\)
Tính nhanh
A= 1+ 1/2 (1+2) +1/3 (1+2+3) +1/4 (1+2+3+4) +...+ 1/16 (1+2+3+4+...+16)
A=1+1/2x3+1/3X6+1/4X10+...+1/16X136
A=1+3/2+2+5/2+3+...+17/2
A=2/2+3/2+4/2+5/2+6/2+...+17/2
A=2+3+4+5+...+16+17/2
A=(2+17)x16:2/2
A=19x16:2/2
A=304:2/2
A=152/2
A=76
****
tính nhanh : 1 + [1 +2 ] + [1 +2 +3 ] + [1 + 2 +3 +4 ] + .... + [1 + 2 +3 +4 +.....+100 ]
Tính nhanh: 1/1+2 + 1/1+2+3 + 1/1+2+3+4+.....+1/1+2+3+.....+2020
Nhanh nho !!
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+3+...+2020}\)
Ta có S = 1 + 2 + ...+ n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n-1): 1 + 1 = n
Áp dụng công thức tính tổng của dãy số cách đều ta có tổng trên là:
S = (n+1)\(\times\) n : 2
Áp dụng công thức tính tổng S trên vào biểu thức A ta có:
A = \(\dfrac{1}{\left(2+1\right)\times2:2}\)+\(\dfrac{1}{\left(3+1\right)\times3:2}\)+...+\(\dfrac{1}{\left(2020+1\right)\times2020:2}\)
A = \(\dfrac{1}{2\times3:2}\) + \(\dfrac{1}{3\times4:2}\)+ \(\dfrac{1}{4\times5:2}\)+...+\(\dfrac{1}{2020\times2021:2}\)
A = \(\dfrac{2}{2\times3}\) + \(\dfrac{2}{3\times4}\) + \(\dfrac{2}{4\times5}\)+...+ \(\dfrac{2}{2020\times2021}\)
A = \(2\) \(\times\)( \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}\)+...+ \(\dfrac{1}{2020\times2021}\))
A = 2 \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2020}\)- \(\dfrac{1}{2021}\))
A = 2\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{2021}\))
A = 1 - \(\dfrac{2}{2021}\)
A = \(\dfrac{2021-2}{2021}\)
A = \(\dfrac{2019}{2021}\)
Tính nhanh C=1/1*2*3+1/2*3*4+1/3*4*5+........+1/2021*2022*2023
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
tính nhanh
11211-1-1-1-2-2-2-2-3-3-3-4-4-4-5-5-5-6-7-7-65-4-3-2-34-5-3-3-4
11211 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 4 - 4 - 4 - 5 - 5 - 5 - 6 - 7 - 7 - 65 - 4 - 3 - 2 - 34 - 5 - 3 - 3 - 4
= 11211 - (1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + 5 + 5 + 6 + 7 + 7 + 65 + 4 + 3 + 2 + 34 + 5 + 3 + 3 + 4)
= 11211 - 190
= 11021