tìm số tự nhiên x biết\(|x|+|x+1|+2019=3x\)
Tìm số tự nhiên x biết rằng 1/3+1/6+1/10+...+2/x.(x-1)=2019/2021
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{2021}\)
<=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
<=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
<=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2042}\)
<=> \(\frac{1}{x+1}=\frac{1}{2021}\)
<=> x + 1 = 2021
<=> x = 2020
Có phải là bình 6a3 học trường THCS Nguyễn Trãi đúng không
tìm số tự nhiên x biết:
1/3+1/6+1/10+.....+2/(x+1)=2019/2021
Đề bạn thiếu 1 số \(x\) nữa đúng không?
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2021}\)
\(\Rightarrow x+1=2021\)
\(\Rightarrow x=2020\)
Vậy \(x=2020\).
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2019}{4042}=\frac{1}{2021}\)
\(\Leftrightarrow x+1=2021\)
\(\Leftrightarrow x=2020\left(tm:x\in N\right)\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+............+\frac{2}{x\left(x+1\right)}=\frac{2019}{2021}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..........+\frac{1}{x\left(x+1\right)}\right]=\frac{2019}{2021}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{x\left(x+1\right)}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4042}\)
\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{2021}\)
\(\Leftrightarrow x-1=2021\)
\(\Leftrightarrow x=2022\)
Vậy \(x=2022\)
Tìm số tự nhiên x, biết rằng:
1/3+1/6+1/10+...+2/x.(x+1)=2018/2019
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4038}\)
\(\Rightarrow x+1=4038\)
\(\Rightarrow x=4037\)
Vậy \(x=4037\)
\(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\frac{1}{x+1}=\frac{1}{4038}\)
\(x=4037\)
Tìm số tự nhiên(x,y) biết:7(x-2019)2=23-y2
Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)
Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)
\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)
Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.
\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)
Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.
Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.
Tìm số tự nhiên x biết :\(2^x+2^{x+1}+2^{x+2}+............+2^{x+2015}=2^{2019}-8\)
tìm các số tự nhiên x,y,z biết 2018^x+2019^y=2020^z.
tìm các số tự nhiên x,y,z biết 2018^x+2019^y=2020^z.
Tìm số tự nhiên x biết: 2x+2x+1+2x+2+.........+2x+2015=22019-8
Bài 1 : Tìm số tự nhiên x biết :
a, 3x + 7 = 2x - 1
b, (x + 5 )( x - 9 ) = 0
Bài 2 : Tìm các số tự nhiên n sao cho :
x - 2 là ước của 3x - 13
câu trả lời ngắn gon nhất là .................................................................................................................................................................................................................................................................................................................. tự làm nhé bạn
xssssaswadqƯDWqdwdwd