Chứng tỏ rằng các phân số 707/9909; 22827/29349; 29785/38295 bằng nhau
chứng tỏ các phân số sau đây bằng nhau
9909/8808
29727/26424
39636/35232
Có: 9909/ 8808= 9/8
29727/26424= 9/8
39636/35232=9/8
Vì 9/8= 9/8= 9/8
Suy ra: 9909/8808 = 29727/26424= 39636/35232
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
chứng tỏ rằng các phân số sau đây bằng nhau:a,23/99 ; 2323/9999 ; 232323/999999
b,-3737/5151 ; -373737/515151
c, 9909/8808 ; 29727/26424 ; 39636/35232
giúp mình nha các bạn ai nhanh mình tick cho
a,23/99 = 23.101/99.101=2323/9999
23/99 = 23.10101/99.10101=232323/999999
b, -3737/5151=-3737.101/5151.101=-373737/515151
c, tương tự thì cứ lấy phân số đầu .2 xong rồi .4
Chứng tỏ rằng các phân số tối giản:
\(\dfrac{4n+1}{6n+1}\)
Do \(4n+1\) và \(6n+1\) đều là các số lẻ nên chúng chỉ có thể có các ước lẻ
Gọi \(d=ƯC\left(4n+1;6n+1\right)\Rightarrow d\) lẻ
\(\left\{{}\begin{matrix}4n+1⋮d\\6n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow6\left(4n+1\right)-4\left(6n+1\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=2\\d=1\end{matrix}\right.\)
Mà d lẻ \(\Rightarrow d=1\)
\(\Rightarrow4n+1\) và \(6n+1\) nguyên tố cùng nhau
\(\Rightarrow\dfrac{4n+1}{6n+1}\) tối giản
chứng tỏ rằng các phân số tối giản với mọi số tự nhiên n : n+1/2n+3
Gọi ƯCLN (n+1,2n+3) = d (d∈N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=>(2n+3)-(2n+2)⋮d => d=1
=> ƯCLN(n+1,2n+3) = 1
=> Phân số n+1/2n+3 tối giản (đpcm)
chứng tỏ rằng các phân số 4n+1/6n+1laf phân số tối giản với mọi số tự nhiên n
Gọi d là ƯCLN(4n+1,6n+1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{1;2\right\}\)
Mà 4n+1 không chia hết cho 2
6n+1 không chia hết cho 2
\(\Rightarrow d=1\)
Vậy \(\frac{4n+1}{6n+1}\)là phân số tối giản
Gọi d là ước chung của 4n+1 và 6n+1. (d€ N*)
\(\Rightarrow4n+1⋮d\) \(\orbr{\begin{cases}\Rightarrow3.\left(4n+1\right)⋮d\\\Rightarrow2.\left(6n+1\right)⋮d\end{cases}}\)
\(\Rightarrow6n+1⋮d\)
\(\Rightarrow3.\left(4n+1\right)-2.\left(6n+1\right)⋮d\)
\(12n+3-12n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số\(\frac{4n+1}{6n+1}\) là phân số tối giản
Chứng tỏ rằng các phân số sau bằng nhau: 15 19: 1515 1919; 151515 191919
1519=15151919=151515191919
chứng tỏ rằng phân số 2n+1/3n+2 chứng tỏ là phân số tối giản
GỌI Đ LÀ ƯC (2N+1/3N+2)
=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ
=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD
=>(6N+3)-(6N+4) CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ
=>Đ=1
=>2N+1/3N+2 LÀ P/S TỐI GIẢN