Cho A bang 1+1/2+1/2^2+1/2^3+1/2^4+......+1/2^2013.Hay so sanh A va 2
Cho A=1/2^2+1/3^2+1/4^2+....+1/2012^2.Hay so sanh A va 1
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
......................
\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}< 1\)
Vậy A < 1
cho A=(1/2^2-1) (1/3^2-1) (1/4^2-1) ... (1/2013^2-1) (1/2014^2-1) và B=-1/2 .
so sanh A va B
Cho \(A=\left(\frac{1}{^{2^2}}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)va\)\(B=-\frac{1}{2}.\)Hay so sanh A va B
cho A=1+1/2+1/3+1/4+.......+1/4026 va B=1+1/3+1/5+........+1/4025
so sanh A/B va 1/2013/2014
P=1/1^2+1/2^2+1/3^2+1/4^2+.......+1/2013^2+1/2014^2
Q=1+3/4
So sanh P va Q
cho so A=\(\frac{2013+\frac{1}{2}}{\left(2012+\frac{1}{2}\right)^2+2013+\frac{1}{2}}\)
B=\(\frac{2013+\frac{1}{3}}{\left(2012+\frac{1}{3}\right)^2+2013+\frac{1}{3}}\)
so sanh A va B
A=(1/22-1)(1/32-1)(1/42-1)...(1/20132-1)(1/20142) ; B=-1/2 . So sanh A va B
Cho A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\) va B = \(\frac{-1}{2}\), So sanh A va B
A = \(-\frac{1.3}{2.2}.-\frac{2.4}{3.3}.\cdot\cdot\cdot-\frac{2013.2015}{2014.2014}=-\frac{\left(1.2.3...2013\right).\left(3.4.5....2015\right)}{\left(2.3....2014\right).\left(2.3....2014\right)}=-\frac{2.2015}{2014}=-\frac{4030}{2014}
1. So sanh:
2014×2015-2/2013+2013×2014 voi 2014×2015-1/2014×2015
2. Cho a, b, c thuoc N* va a nho hon b.
Hay chung to: a/b nho hon a+c/b+c va 1 nho hon a/a+b +b/b+c+c/a+c