4+2^2+2^3+2^4+...+2^20
Tính nhẩm :
4 × 5 = ..... | 5 × 4 = ..... | 20 : 4 = ..... | 20 : 5 = ..... |
3 × 4 = ..... | 4 × 3 = ..... | 12 : 3 = ..... | 12 : 4 = ..... |
4 × 2 = ..... | 2 × 4 = ..... | 8 : 4 = ..... | 8 : 2 = ..... |
2 × 3 = ..... | 3 × 2 = .... | 6 : 2 = ..... | 6 : 3 = ..... |
Phương pháp giải:
Nhẩm lại bảng nhân và chia trong phạm vi đã học rồi điền kết quả vào chỗ trống.
Lời giải chi tiết:
4 × 5=20 | 5 × 4=20 | 20 : 4=5 | 20 : 5=4 |
3 × 4=12 | 4 × 3=12 | 12 : 3=4 | 12 : 4=3 |
4 × 2=8 | 2 × 4=8 | 8 : 4=2 | 8 : 2=4 |
2 × 3=6 | 3 × 2=6 | 6 : 2=3 | 6 : 3=2 |
\(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+......+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
Tính A = \(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Tính\(y=\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)
(1/2+1/3+1/4+......+1/20)+(2/3+2/4+.....+2/20)+.....+19/20
Bạn ơi, bài này là tính tổng hay chứng minh gì thế bạn ?
Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1
bài này là làm j đấy??? Chứng minh hay tính tổng???
1+ 1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+5+...+20)
`Answer:`
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.3+...+\frac{1}{2}.210\)
\(=1+1,5+2+...+10,5\)
\(=\frac{\left(10,5+1\right)[\left(10,5-1\right):0,5+1]}{2}\)
\(=\frac{230}{2}\)
\(=115\)
A=(2/1+2)+(2+3/1+2+3)+...+(2+3+4+...+20/1+2+3+4+...+20)
TÍNH: B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Tính B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Ta có:
\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2\left(2+1\right)}{2}+\dfrac{1}{3}.\dfrac{3\left(3+1\right)}{2}+...+\dfrac{1}{20}.\dfrac{20\left(20+1\right)}{2}\)
\(=\dfrac{2}{2}+\dfrac{2+1}{2}+\dfrac{3+1}{2}+...+\dfrac{20+1}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{20}{2}\)
\(=\dfrac{2+3+4+...+20}{2}=\dfrac{\dfrac{20\left(20+1\right)}{2}-1}{2}\)
\(=\dfrac{209}{2}\)
Vậy \(B=\dfrac{209}{2}\)