Chứng minh x,y là các số nguyên thoả mãn x-3y chia hết cho 11 thì 3x+2y chia hết cho 11
Chứng minh với x, y là các số nguyên thỏa mãn x-3y⋮11 thì 3x+2y⋮11
Lời giải:
$x-3y\vdots 11$
$\Leftrightarrow x-3y+11x+11y\vdots 11$
$\Leftrightarrow 12x+8y\vdots 11$
$\Leftrightarrow 4(3x+2y)\vdots 11$
Mà $(4,11)=1$ nên $3x+2y\vdots 11$
Cho biểu thức A = 5x + 2y và B = 9x + 7y
Chứng minh rằng nếu các số nguyên x, y thoả mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng
chia hết cho 17.
Vì A chia hết cho 17
=> 7A = 35x + 14y cũng chia hết cho 7
mặt khác ta có 2B = 18x + 14y
Xét 7A - 2B
= 35x + 14y - 18x - 14y
= 17x chia hết cho 17
mà 7A chia hết cho 17
=> 2B phải chia hết cho 17
mà 2 ko chia hết cho 17 => B chia hết cho 17 ( đpcm )
Cho x; y là số tự nhiên :
a , Biết 3x + 2y chia hết
Chứng minh 5x + 7y chia hết cho 11
b , Biết x + 3y chia hết cho 7
Chứng minh 5x + y chia hết cho 7
a/
5x+7y=11(x+y)-(6x+4y)=11(x+y)-2(3x+2y)
11(x+y) chia hết cho 11; 3x+2y chia hết cho 11 => 2(3x+2y) chia hết cho 11
=> 5x+7y chia hết cho 11
b/
5x+y=7(x+y)-(2x+6y)=7(x+y)-2(x+3y)
7(x+y) chia hết cho 7; x+3y chia hết cho 7 => 2(x+3y) chia hết cho 7
=> 5x+y chia hết cho 7
1.Cho 2x+3y chia hết cho 11 thì 10x+4y chia hết cho 11
2. Cho 3x+2y chia hết cho 12. Chứng minh rằng 10x+y chia hết cho 17
Chứng minh với mọi số nguyên `x,y` thì
`x^3y^2 - 3x^2y + 2y` chia hết cho `xy - 1`
\(x^3y^2-3x^2y+2y=x^3y^2-x^2y-2x^2y+2y\\ =x^2y\left(xy-1\right)-2y\left(xy-1\right)=\left(xy-1\right)\left(x^2-2y\right)⋮\left(xy-1\right)\)
Chứng minh rằng với x,y là số nguyên
NẾU 3X-2Y CHIA HẾT CHO 17 THÌ 11X-13Y CHIA HẾT CHO 17
NẾU 4X+3Y CHIA HẾT CHO 13 THÌ 7X+2Y CHIA HẾT CHO 13
NẾU X+99Y CHIA HẾT CHO 7 THÌ X+Y CHIA HẾT CHO 7
a,15(3x-2y) chia het cho 17
15(3x-2y)-17(2x-y) chia het cho 17
45x-30y-34x+17y chia het cho 17
11x-13y chia het cho 17
b,5(4x+3y) chia het cho 13
5(4x+3y)-13(x+y) chia het cho 13
20x+15y-13x-13y chia het cho 13
7x+2y chia het cho 13
c,x+99y chia het cho 7
x+99y-98y chia het cho 7
x+y chia het cho 7
4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.
Cho a,b,c,d là các chữ số (a,c thuộc 0) thoả mãn (12 x ab+cd) chia hết cho 11. Chứng minh abcd chia hết cho 11.
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)