Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lý Nhã Hân
Xem chi tiết
tieuthu songngu
7 tháng 4 2019 lúc 20:28

Vì a, b >0 nên áp dụng bất đẳng thức Cô - si , ta có

\(a+b\ge2\sqrt{ab}\)(1)

Mad a,b >0 \(\Rightarrow\frac{1}{a},\frac{1}{b}\)cũng lớn hơn 0 , áp dụng Cô - si ta có

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)(2)

Từ (1) và (2) ta có :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}\)=\(4\)

Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)

Cứ có bài toán nào đề bài cho là lớn hơn 0 thì cậu nghĩ ngay tới cô si nhé

nguyễn đức mạnh
7 tháng 4 2019 lúc 20:35

áp dụng bất đẳng thức cô si ta có 

a2+ b2 \(\ge\)2ab 

\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge\frac{4ab}{ab}\)\(\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge4\)\(\Rightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)   ( ĐPCM)

Khanh Sky
Xem chi tiết
olm (admin@gmail.com)
28 tháng 9 2019 lúc 20:40

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Đệ Ngô
28 tháng 9 2019 lúc 20:46

bạn làm như này nha:

Từ đpcm  \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

             \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

             \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)      

             \(\Leftrightarrow0=2.\left(\frac{a+b+c}{abc}\right)\)

             \(\Leftrightarrow0=a+b+c\)luôn đúng do giả thuyết cho

                                \(\Rightarrowđpcm\)

                                            

nguyễn thảo hân
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
16 tháng 9 2023 lúc 22:07

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

Trần Ngọc An Như
Xem chi tiết
Phương An
8 tháng 9 2016 lúc 9:13

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(2ab=ac+ab\)
\(ac-ab=ab-bc\)

\(a\left(c-b\right)=b\left(a-c\right)\)

\(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

 

Mũ Rơm
Xem chi tiết
Nguyễn Thị Như Tâm
Xem chi tiết
Bùi Nhật Vy
Xem chi tiết
ST
10 tháng 8 2018 lúc 20:27

Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi

Ta có: a+b+c=0 => a+b=-c

=>(a+b)2=(-c)2

=>a2+2ab+b2=c2

=>a2+b2-c2=-2ab

Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca

=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)

Doraemon
31 tháng 8 2018 lúc 9:48

Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)

\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)

Uchiha Sasuke
Xem chi tiết

a, Áp dụng bđt Cauchy ta có

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

b, a(a+2)<(a+1)2

=>a2+2a<a2+2a+1(đúng)

Uchiha Sasuke
19 tháng 4 2019 lúc 21:38

Còn câu c bạn ơi