D=5/4 + 5/4^2 +5/4^3 + 5/4^4 +.....+5/4^99 .Chứng tỏ D<5/3
cho A = 4 + 4^2 + 4^3 + 4^4 + .........4^99 +4^100 chứng tỏ rằng A chia hết cho 5
Cho A=4+4^2+4^3+4^4+....+4^99+4^100
Chứng tỏ A chia hết cho 5
\(A=4+4^2+4^3+...+4^{100}\)
\(A=\left(4+\text{ }4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(A=\left(1+4\right).\left(4\right)+\left(1+4\right).\left(4^3\right)+...+\left(1+4\right).\left(4^{99}\right)\)
\(A=5.\left(4+4^3+4^5+...+4^{99}\right)\)
Vậy A chia hết cho 5
Các bạn nha!
các số 5+5^2 +5^3 +5^4...+5^99+5^100 chứng tỏ chia hết cho 6
5+5^2 +5^3 +5^4...+5^99+5^100
= ( 5+5^2)+(5^3+5^4)+....+(5^99+5^100)
= 5(1+5)+5^3(1+5)+....+5^99(1+5)
= 5.6+5^3.6+....+5^99.6
= (5+5^3+....+5^99).6
Vì (5+5^3+....+5^99).6 chia hết cho 6 nên 5+5^2 +5^3 +5^4...+5^99+5^100 chia hết cho 6.
cho A= 1/2*3/4*5/6*...*99/100 và B= 2/3*4/5*5/6*...*100/101
chứng tỏ A bé hơn BTính tích A*BChứng tỏ A bé hơn 1/101.
Ta có:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101
=> A < B
2.
\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
3.
Vì A < B => A.A < A.B => A2 < 1/101 < 1/100
Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10
Chứng tỏ
A=5^2+5^3+5^4+5^5+...+5^98+5^99
chia hết cho 6
5^2+5^3+5^4+...+5^98+5^99=(5^2+5^3)+(5^4+5^5)+...+(5^98+5^99)=5^2.(1+5)+5^4.(1+5)+...+5^98.(1+5)=5^2.6+5^4.6+...+5^98.6=6.(5^2+5^4+...+5^98)=5^2+5^4+...+5^98 chia hết cho 6
Cho A=4+\(4^2+4^3+4^4+...+4^{99}+4^{100}\)
Chứng tỏ A chia hết cho 5
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = ( 4 + 42 ) + ( 43 + 44 ) + ... + (499 + 4100)
A = ( 4 + 42 ) + 43(4 + 42 ) + .... + 499(4 + 42)
A = 20 + 43.20 + .... + 499.20
A = 20 ( 1 + 43 + .... + 499 )
A = 4.5.(1 + 43 + ... + 499 ) ⋮ 5 ( đpcm )
\(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(A=4\left(4+1\right)+4^3\left(4+1\right)+...+4^{99}\left(4+1\right)\)
\(=5\left(4+4^3+...+4^{99}\right)\Rightarrow A⋮5\)
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
Cho \(S=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\). Chứng tỏ rằng S<\(\dfrac{1}{16}\)