Tinh
1/2003*[1-1/2004]*[1-1/2005]*[1-1/2006].Ban viet cho minh day du nhe
Cho : A = 1/1*2+1/3*4+1/5*6+.....+1/2003*2004+1/2005*2006
B=1/1004*2006+1/1005*2005+1/1006*2004+....+1/2006*1004
Tinh: A/B
So sánh A = 2005:1/6-2//2004:1/2006+2003 và B= 1:2007/2006
Tinh nhanh :
a) Tu so : 2005*2007-1
Mau so : 2004+2005*2006
b) Tu so : 2003*2004+2005*10+1994
Mau so: 2005*2004-2003*2004
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
SO SANH HAI PHAN SO 2003/2004+2004/2005+2005/2003 va 3 [CAC BAN GIAI RA GIUP MINH NHE]
minh lan dau tien vao trang web nay nen khong biet nhieu
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)
x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005
Vậy có ai biết làm ko giúp tớ nhé !
4) So sánh A=2005^2005+1/2005^2006+1 và B=2005^2004+1/ 2003^2009+2
Giúp mình nha!
Vậy A < B
CHÚC HỌC TỐT VÀ ĐỪNG QUÊN TICK NHA
a) 2005*2007-1 b)2003*2004+2005*10+1994
2004+2005*2006 2005*2004-2003*2004
c) ( 5+3/8+18+1/2-7-5/24 )
c) 5 + \(\frac{3}{8}\)+18 + \(\frac{1}{2}\) - 7 - \(\frac{5}{24}\)
=\(\frac{43}{8}\)+ \(\frac{35}{2}\) +\(\frac{163}{24}\)
=\(\frac{129}{24}\)+ \(\frac{420}{24}\)+\(\frac{163}{24}\)
= \(\frac{58}{51}\)
k nhé
\(\frac{2005\times2007-1}{\left(2005+2005\times2006\right)-1}=\)\(\frac{2005\times2007-1}{2005\left(1+2006\right)-1}=\frac{2005\times2007-1}{2005\times2007-1}=1\)
Cho x = 2005. Tính giá trị của biểu thức:
\(x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1\)
Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)
A = (1 + 1/2003 ) x ( 1 - 1/2004 ) x ( 1 + 1/2005 ) x ( 1 - 1/2006 ) x ( 1 + 1/2007 ) x ( 1 - 1/2008 )
\(A=\left(1+\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right).\left(1+\frac{1}{2005}\right).\left(1-\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right).\left(1-\frac{1}{2008}\right)\)
\(=\frac{2004}{2003}.\frac{2003}{2004}.\frac{2006}{2005}.\frac{2005}{2006}.\frac{2008}{2007}.\frac{2007}{2008}\)
\(=1\)