Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lăng Thiên Tuyết
Xem chi tiết
Tsurumaru
Xem chi tiết
Thái Thảo
Xem chi tiết
GTV Bé Cam
Xem chi tiết
✨♔♕ You
21 tháng 5 2019 lúc 12:44

Ta có :

M + N = 6x2 + 3xy - 2y2  +  ( 3y2 - 2x2 - 3xy )

          = 6x2 + 3xy - 2y2 + 3y2 - 2x2  - 3xy 

          = 4x2  + y2 ( đoạn này mình làm hơi tắt sry nha)

Do 4x2  + y2  \(\ge\)

Suy ra : M + N \(\ge\) 0 <=>  M và N \(\ge\)0

Do đó  không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm

Đặt \(X=M+N=4x^2+y^2\)

Vì \(4x^2\ge0\forall x\)

\(y^2\ge0\forall x\)

\(X\ge0\forall x\)

Vậy...

Kiệt Nguyễn
28 tháng 5 2019 lúc 6:45

Ta có: \(M+N=\left(6x^2+3xy-2y^2\right)+\left(3y^2-2x^2-3xy\right)\)

\(\Rightarrow M+N=6x^2+3xy-2y^2+3y^2-2x^2-3xy\)

\(\Rightarrow M+N=\left(6x^2-2x^2\right)+\left(3xy-3xy\right)+\left(3y^2-2y^2\right)\)

\(\Rightarrow M+N=4x^2+0+y^2\)

\(\Rightarrow M+N=4x^2+y^2\)

Ta có: \(\hept{\begin{cases}4x^2\ge0\\y^2\ge0\end{cases}}\Rightarrow M+N\ge0\)

Vậy hai đa thức M và N không thể nhận cùng lúc hai giá trị âm

Linh Nguyễn Khánh
Xem chi tiết
Cô Hoàng Huyền
1 tháng 6 2016 lúc 16:49

Ta có: \(P=2x^3+10x^2-6x+7;Q=-2x^3-10x^2+6x-7+2x^2=-P+2x^2\)

Như vậy \(P+Q=2x^2\ge0.\)

Nếu P và Q cùng âm thì ta thấy ngay \(P+Q< 0\)(Vô lý)

Vậy P và Q không thể cùng âm.

Chúc em luôn học tập tốt :)))

Dương Ngô Anh Nguyên
Xem chi tiết
Triệu Việt Hà (Vịt)
Xem chi tiết
Nguyễn Văn A
22 tháng 12 2022 lúc 21:51

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

Nguyễn Văn A
22 tháng 12 2022 lúc 21:55

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

Huong Nguyen
Xem chi tiết
Devil
Xem chi tiết
Hoàng Phúc
30 tháng 4 2016 lúc 20:19

Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1

Vậy tổng các hệ số của đa thức

f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016

 =f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1

Devil
30 tháng 4 2016 lúc 20:23

thanks