Cho A\(=\)\(\frac{10^5+4}{10^5-1}\)và B\(=\frac{10^5+3}{10^5-2}\)
Hãy so sánh A và B
cho A = \(\frac{10^5+4}{10^5-1}\)và B =\(\frac{10^5+3}{10^5-2}\)
so sánh A và B
(10^5+4)/(10^5-1)=(10^5-1+5)/(10^5-1)={(10^5-1)/(10^5-1)}+{5/(10^5-1)}=1+{5/(10^5-1)} (1)
(10^5+3)/(10^5-2)=(10^5-2+5)/(10^5-2)={(10^5-2)/(10^5-2)}+{5/(10^5-2)}=1+{5/(10^5-2)} (2)
từ 1 và 2 ta so sánh{5/(10^5-1)} và {5/(10^5-2)}....
suy ra ... kết quả
So sánh hai số A = \(\frac{10^5+4}{10^5-1}\)và B = \(\frac{10^5+3}{10^5-2}\)
So sánh hai số A = \(\frac{10^5+4}{10^5-1}\)và B = \(\frac{10^5+3}{10^5-2}\)
Hãy so sánh:
a) A= \(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)với 3.
b) A= \(\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}\)và B=\(\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}\)
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
b) \(A=\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}=5^{11}\)
bn rút gọn là dc
\(B=\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}=7^{11}\)
\(A=5^{11},B=7^{11}\)
\(\Rightarrow7^{11}>5^{11}\Rightarrow B>A\)
hk tốt #
Cho A= \(\frac{10^{2011+5}}{10^{2011}-2}\); B= \(\frac{10^{2011}}{10^{2011}-7}\). Hãy so sánh A và B
\(A=\frac{10^{2011}+5}{10^{2011}-2}=\frac{10^{2011}-2+7}{10^{2011}-2}=1+\frac{7}{10^{2011}-2}\)
\(B=\frac{10^{2011}}{10^{2011}-7}=\frac{10^{2011}-7+7}{10^{2011}-7}=1+\frac{7}{10^{2011}-7}\)
Vì \(\frac{7}{10^{2011}-2}< \frac{7}{10^{2011}-7}\Rightarrow1+\frac{7}{10^{2011}-2}< 1+\frac{7}{10^{2011}-7}\Rightarrow A< B\)
Cho\(A=\frac{1+3^1+3^2+...+3^{10}}{1+3^1+3^2+...+3^9}\) và \(B=\frac{1+5^1+5^2+...+5^{10}}{1+5^1+5^2+...+5^9}\) So sánh A và B
So sánh
1, A = \(\frac{10^5+2}{10^5-1}\)và B = \(\frac{10^5}{10^5-3}\)
2, B = \(\frac{10^{2018}}{10^{2018}-2}\) và C = \(\frac{10^{2018}}{10^{2018}-2}\)
Tìm x biết:
(2x - 5) - \(\frac{3}{2}\). (6x + 1) = 4
So sánh hai số A và B: A = \(\frac{30^{10}-1}{30^{10}+2}\)và B = \(\frac{30^{10}-7}{30^{10}-4}\)
m hay lắm Dương, t gửi câu hỏi, m cũng gửi!!! Good Job
(2x-5)-(\(\frac{3}{2}\) . 6x + \(\frac{3}{2}\))=4
2x -5 - 9x -\(\frac{3}{2}\) =4
2x - 9x = 4+ 5+ \(\frac{3}{2}\)
a) Cho a, b, c\(\in\)\(ℕ^∗\). Chứng minh rằng nếu \(\frac{a}{b}\)<1 \(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+c};\)
Hãy so sánh \(\frac{10^9+1}{10^{10}+1}\)và\(\frac{10^8+1}{10^9+1}\)
Cho biểu thức a=1+5+52+.......+531+532. Tìm dư trong phép chia biểu thức A cho 31
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
So sánh :
Ta có công thức từ câu a) :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{10^9+1}{10^{10}+1}< \frac{10^9+1+9}{10^{10}+1+9}=\frac{10^9+10}{10^{10}+10}=\frac{10\left(10^8+1\right)}{10\left(10^9+1\right)}=\frac{10^8+1}{10^9+1}\) ( nhìn phân số đầu với phân số cuối )
Vậy \(\frac{10^9+1}{10^{10}+1}< \frac{10^8+1}{10^9+1}\)