tìm n để 2/1.3+2/3.5+2/5.7+2/7.9+...+2/n.(n+2)<2003/2004
TÌM N ĐỂ
2/1.3+2/3.5+2/5.7+....+2/n(n+2) < 2003/2004
tính tổng S=2/1.3+2/3.5+2/5.7+2/7.9+2/9.11
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
-2/1.3-2/3.5-2/5.7-2/7.9-.....-2/2015.2017-1/27
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{1}-\frac{1}{99}\)
\(A=\frac{98}{99}\)
ta có A=1-1/3+1/2-1/5+..................1/95-1/97+1/97-1/99
A=1-1/99
A=98/99
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
A=1-1/3+1/3-1/5+1/5-1/7+..........+1/97-1/98
A=1-1/98
A=98/99
\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) + ... + \(\dfrac{2}{2020.2022}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)
B = 3/2 + 3/6 + 3/12 + 3/15 +............... + 3/(n-1)n
C = 2/1.3 + 2/3.5 + 2/7.9 + ...................... + 2/30.32
D = 1/1.3 + 1/3.5 + ............. + 1/ ( n+1 )( n+3 )
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
Tìm n để
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}<\frac{2003}{2004}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)
\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)
\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)
\(\Rightarrow n+2<2004\)
\(\Rightarrow n=2002\)
nhầm bước cuối
\(\Rightarrow n<2002\)
tìm y
[ 1/1.3+1/3.5+1/5.7+1/7.9 ] . y = 2/3
\(\left[\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right].y=\frac{2}{3}\)
\(\Leftrightarrow\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right].y=\frac{2}{3}\)
\(\Leftrightarrow\left[\frac{1}{1}-\frac{1}{9}\right].y=\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}.y=\frac{2}{3}\)
\(\Leftrightarrow y=\frac{2}{3}:\frac{8}{9}\)
\(\Leftrightarrow y=\frac{3}{4}\)
Tìm y : ( 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 ) .y = 2/3.
( \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\)) x \(y\) = \(\frac{2}{3}\)
( \(\frac{2}{1x3}\)+ \(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\)) x \(y\) = \(\frac{4}{3}\) (nhân 2 vế lên với 2)
(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)- \(\frac{1}{11}\)) x \(y\)= \(\frac{4}{3}\)
( 1 - \(\frac{1}{11}\)) x \(y\)=\(\frac{4}{3}\)
\(\frac{10}{11}\) x \(y\) =\(\frac{4}{3}\)
\(y\) = \(\frac{4}{3}\): \(\frac{10}{11}\)
\(y\) = \(\frac{4}{3}\)x \(\frac{11}{10}\)
\(y\) =\(\frac{22}{15}\)
kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?