Tính nhanh :
P = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{8.9.10}\)
\(x\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)=\frac{1}{5}\)
AI GIẢI NHANH LIKE CHO!!!!!!! NHANH LÊN NHA HẾT GIỜ RÙI!!!!!!!!!!!!!!!!
\(M=\frac{4}{1.2.3}+\frac{4}{2.3.4}+.......+\frac{4}{8.9.10}\)
Ta có: \(M=\frac{4}{1.2.3}+\frac{4}{2.3.4}+...+\frac{4}{8.9.10}\)
\(M=4\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(M=4.\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(M=2\left(\frac{1}{2}-\frac{1}{90}\right)=1-\frac{1}{45}=\frac{44}{45}\)
Vậy \(M=\frac{44}{45}\)
\(M=\frac{4}{1.2.3}+\frac{4}{2.3.4}+...+\frac{4}{8.9.10}\)
\(=2.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)\)
\(=2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=2.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{90}\right)\)
\(=2.\frac{22}{45}\)
\(=\frac{44}{45}\)
Tìm STN x biết:
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)
AI GIẢI NHANH MÀ ĐÚNG THÌ MÌNH TICK CHO
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{22}{45}=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}=1\)
\(\Rightarrow x=2\)
tim x
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
Có \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)
Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)
Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)
\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)
Thay vào phép tính trên ta được:
\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
Tim x biet
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\right)\right]x=\frac{23}{45}\)
=>\(\left[\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\cdot\frac{22}{45}\right]x=\frac{23}{45}\)
=> \(\frac{11}{45}x=\frac{23}{45}\)
=> \(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{45}\cdot\frac{45}{11}=\frac{23}{11}\)
Vậy x = 23/11
Ez :))
Tìm x biết :
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)
\(pt\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}x=1\)
\(\Rightarrow x=2\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
Giúp mình với
Ta có : 1/1 -1/2 -1/3 +1/2-1/3-1/4+........+1/8-1/9-1/10
Ta gạch các phân số ở giữa còn lại 1/1-1/10=9/10
Giải :
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)
\(=\frac{1}{2}-\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{45}{90}-\frac{1}{90}=\frac{44}{90}=\frac{22}{45}\)
\(@Cothanhkhe-hoqchac\)
Tính hợp lí
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
ta có:1/1.2-1/2.3+1/2.3-1/3.4+.....+1/8.9-1/9.10
=1/1.2-1/9.10=1/2-1/90
=45/90-1/90=44/90=22/45
Duyệt nha
Đặt A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
=> 4A = \(\frac{4}{1.2.3}+\frac{4}{2.3.4}+...+\frac{4}{8.9.10}\)
=> 4A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
=> 4A = \(\frac{\text{1}}{\text{1}.2}-\frac{\text{1}}{9.\text{1}0}\)
=> 4A = \(\frac{\text{1}}{2}-\frac{\text{1}}{90}=\frac{22}{45}\)
=> A = \(\frac{\text{1}\text{1}}{90}\)
Kết quả đó
Tìm x biết
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
\(A=\frac{22}{45}:2=\frac{11}{45}\)
thay A vào ta được
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)