Cho đa thức f (x) =x^14 - 14x^13 + 14 x^12 -.....+14x^2 - 14x +14
Tính f (13)
Đa thức f x= x14-14x13+14x12-...+14x2-14x+14. Tính f(13)
Tìm nghiệm của đa thức sau: x2 + 8x +25
Cho đa thức f(x) = x14 - 14x13 + 14x12 - ... + 14x2 - 14x + 14. Tính f(13)
Bài 1:
\(f\left(x\right)=x^2+8x+25\)
Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)
\(\Rightarrow x^2+8x+16+9=0\)
\(\Rightarrow\left(x+4\right)^2+9=0\)
Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )
Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm
Bài 2:
\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)
\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)
Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)
\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)
Vậy \(f\left(13\right)=1\)
Cho đa thức: f(x)=x14-14x13+14x12-......+13x2-14x+14 Tính f(13)
Giải giúp em nha mọi người :)
lời giải nè
f(x)=x14-(13+1)x13+(13+1)x12-....+(13+1)x2-(13+1)x+(13+1)
mà theo đầu bài f(x)=13 => chỗ nào có 13 ta thay thành x
=>f(13)=x14-(x+1)x13+(x+1)x13-.......+(x+1)x2-(x+1)x+(x+1)
<=>f(13)=x14-x14-x13+x14+x13-.......+x3_x2-x2-x+x+1=1
=>f(13)=1
k cho mk nha!!!
Tính giá trị của đa thức sau: f(x)=x^5-14x^4+14x^3-14x^2+14x-1 tại x=13
TL
T i k cho mik ik rồi mik Trả lời cho
#Kirito
tính giá trị đa thức M(x)=x^5-14x^4+14x^3-14x^2+14x-1 tại x =13
x=13 nên x+1=14
\(M=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
=x-1
=13-1=12
Các giá trị x, y thỏa mãn đẳng thức |x+3y−1|+(2y−12)2000=0 là:
A. x=−14;y=−14x=−14;y=−14
B. x=−14;y=14x=−14;y=14
C. x=14;y=−14x=14;y=−14
D. x=14;y=14
Tính nhanh giá trị của đa thức B(x)= x^7 - 14x^6+15x^5 -23x^4 -41x^3+26x^2+x-12 tại x=13
cho các đa thức: f(x)=x3-x2-14x+24
và d(x)=x2+x-12
biết rằng f(x) chia hết cho d(x). hãy nâu các tìm thương f(x);d(x) bằng nhiều cách
Cách 1: Thực hiện phép chia: \(f\left(x\right):g\left(x\right)=x-2\)
Cách 2:
\(f\left(x\right)=x^3-x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
Khi đó: \(f\left(x\right):g\left(x\right)=x-2\)
Tìm các giá trị nguyên của x để đa thức A=12x^3-7x^2-14x+14 chia hết cho đa thức B=4x-5
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²
cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3
Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1
:D