Cho tam giác BDC, DH vuông góc với BC, A thuộc tia đối DH
So sánh : AB và AC
2. Cho tam giác ABC cân tại A. M thuộc AB, N thuộc AC sao cho AM=AN
a) Hình chiếu của BM và CN trên BC = nhau
b) BN > BC+MN/2
Cho tam giác ABC cân tại A. Lấy M bất kỳ thuộc cạnh AB (M không trùng với A,B), N thuộc tia đối của tia CA sao cho BM = CN. Gọi I là giao điểm của BC và MN. Kẻ MH và NK cùng vuông góc với BC (H,K thuộc BC) a, CMR: MN>BC b,Vẽ ra phía ngoài tam giác ABC các tam giác đều ANP và AMQ. Gọi E,F lần lượt là trung điểm của AQ và AP. CMR: tam giác IEF đều
Bài 4: (3 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC). Kẻ HD, HE lần lượt vuông góc với AB và AC (D thuộc AB, E thuộc AC). Trên tia đối của tia DH lấy điểm M; trên tia đối của tia EH lấy điểm N sao cho DM = DH; EN = EH.
a) Chứng minh tam giác ABH = ACH ;
b) Chứng minh tam giác AMN là tam giác cân, từ đó suy ra góc BAC = 1/2 góc MAN
c) Chứng minh MN//DE.
d) Cho AB = 5cm, BC = 6cm. Tính độ dài BD.
Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(
a) Xét △AHB và △AHC có:
AHB = AHC (= 90o)
AH: chung
AB = AC (△ABC cân)
=> △AHB = △AHC (ch-cgv)
b) Xét △ADM và △ADH có:
ADM = ADH (= 90o)
DM = DH (gt)
AD: chung
=> △ADM = △ADH (2cgv)
=> AM = AH (2 cạnh tương ứng) (1)
Xét △ANE và △AHE có:
AEH = AEN (= 90o)
EH = EN (gt)
AE: chung
=> △ANE = △AHE (2cgv)
=> AN = AH (hai cạnh tương ứng) (2)
Từ (1) và (2) => AM = AN => △AMN cân tại A
Ta có: MAN = MAB + BAH + HAC + CAN
Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)
=> MAN = 2BAH + 2 HAC
=> MAN = 2BAC
=> BAC = 1/2MAN
c) Ta có: HAD = HAE (△AHB = △AHC)
Mà HAD = DAM, HAE = EAN
=> HAD + DAM = HAE + EAN
=> HAM = HAN
Gọi giao điểm AH và MN là F
Xét △AFM và △AFN có:
AF: chung
FAM = FAN (cmt)
AM = AN (cmt)
=> △AFM = △AFN (c.g.c)
=> AFM = AFN (2 góc tương ứng)
Mà AFM + AFN = 180o => AFM = AFN = 90o
=> AH vuông góc MN (1)
Gọi giao điểm của DE và AH là I
Xét △ADH và △AEH có:
ADH = AEH (= 90o)
AH: chung
HAD = HAE (△HAB = △HAC)
=> △ADH = △AEH (ch-gn)
=> AD = AE (2 cạnh tương ứng)
Xét △AID và △AIE có:
AI: chung
IAD = IAE (cmt)
AD = AE (cmt)
=> △AID = △AIE (c.g.c)
=> AID = AIE (2 góc tương ứng)
Mà AID + AIE = 180o => AID = AIE = 90o
=> AH vuông góc DE (2)
Từ (1) và (2) => MN // DE
d) \(\Delta\)ABC cân tại A có AH là đường cao
=> AH là đường trung tuyến
=> H là trung điểm BC
=> BH = HC = BC : 2 = 3 ( cm )
\(\Delta\)ABH vuông tại H => AB2 - BH2 = AH2 => AH = 4 cm
=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB
=> 3.4 = HD . 5 => HD = 2,4 cm
\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD2 = 3,24 => BD = 1,8 cm
Cho tam giác ABC cân tại A . vẽ phân giác ad[d thuộc bc]. kẻ dm vuông góc ab[ m thuộc ab],dn vuông góc ac[ n thuộc ac] a]chứng minh am=an b/ chứng minh mn//bc c/ trên tia đối của m lấy điểm e sao cho md=me, trên tia đối của tia nd lấy điểm f sao cho nd=nf. chứng minh tam giác aef cân
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
Cho Tam giác ABC vuông góc tại A. AB=3cm và AC=4cm a) Tính BC b) Trên tia đối của của AB lấy I sao cho AB = AI. Chứng minh tam giác BIC cân c)Vẽ AN thuộc BC. N thuộc BC, AM vuông góc CI, M thuộc CI. Chứng minh tam giác ANC= tam giác AMC d) Chứng minh MN song song với BI
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB
Cho tam giác ABC vuông tại A , vẽ tia phân giác BM của góc B ( M thuộc AC ) . Trên BC xác định điểm N sao cho BA = BN
a , CMR tam giác ABM = tam giác NBM
b,So sánh AM và MC
c,Trên tia đối của tia AB lấy điểm E sao cho AE=CN.Gọi I là trung điểm của CE.CMR : B,M,I thẳng hàng
a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.
b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.
Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.
c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.
Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.
Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.
Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$
Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$
Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$
Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.
Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.
Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.
a: Xét ΔABM va ΔNBM có
BA=BN
góc ABM=góc NBM
BM chung
=>ΔABM=ΔNBM
b: ΔABM=ΔNBM
=>MA=MN
mà MN<MC
nên MA<MC
c: Xet ΔMAE vuông tại A và ΔMNC vuông tại N có
MA=MN
AE=NC
=>ΔMAE=ΔMNC
=>ME=MC
=>M nằm trên trung trực của CE
mà BI là trung trựccủa CE
nen B,M,I thẳng hàng
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)
mà \(\widehat{MAB}=\widehat{NAC}\)
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC(ΔBAC cân tại A)
\(\widehat{MAB}=\widehat{NAC}\)(cmt)
Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{DAE}}{2}\)(1)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{ADE}=\dfrac{180^0-\widehat{DAE}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ADE}\)
mà \(\widehat{AMN}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị
nên MN//DE(Dấu hiệu nhận biết hai đường thẳng song song)
hay MN//BC(đpcm)
Cho tam giác ABC, AB<AC. M là trung điểm của BC. Trên AM lấy N sao cho M là trung điểm của AN
a, tam giác AMB= tam giác ANC
b, vẽ CD vuông góc AB (D thuộc AB). So sánh góc BCN và góc ABC. Tính góc DCN
c, vẽ AH vuông góc với BC( H thuộc BC). Trên tia đối của HA lấy I sao cho HI =HA. CMR BI=CN
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH vuông góc với AM ( H thuộc AM ). Kẻ CK vuông góc với AN ( K thuộc AN ). Chứng minh rằng BH = CK
c) chứng minh MN = HK và MN // HK
Bạn tự vẽ hình nha
a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB
<=> góc ABM = góc ACN (vì các góc kề bù với nhau)
Xét tam giác ABM và tam giác ACN
Có: AB = AC (CMT)
góc ABM = góc ACN (CMT)
BM = CN (gt)
<=> tam giác ABM = tam giác ACN (c.g.c)
<=> AM = AN ( 2 góc tương ứng)
<=> tam giác AMN cân tại A
b. Vì tam giác ABM = tam giác ACN (CMT)
<=> góc MAB = góc CAN ( 2 góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông AKC
Có: AB= AC (CMT)
góc AHB= góc AKC= 90 độ
góc MAB = góc CAN (CMT)
<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)
Cho tam giác ABC đều , H là trung điểm của BC , N thuộc AB , N thuộc tia đối của tia CA sao cho BM=CN ( N,M khác đỉnh của tam giác ABC ) . CO vuông góc với AC và cắt AH tại O . a) CM: AH vuông góc với BC . Tính AH biết BC = 6cm b) CM: OB=OC,OB vuông góc với AB