cm:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)giúp tui với nha
\(^{\frac{a^3+b^3+c^3}{b^3+c^3+d^3}}\)giúp tui voi nha
Tìm các số tự nhiên a, b, c, d nhỏ nhất biết :
\(\frac{a}{b}=\frac{5}{3};\frac{b}{c}=\frac{12}{21};\frac{c}{d}=\frac{6}{11}\)
giúp tui với !! Ai nhanh + đúng nhất = tui tick cho nha
Cho a,b,c,d >0. Chứng minh:
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
Giúp với nha!!!!!
Áp dụng BĐT cosi ta có
\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\); \(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\); \(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)
\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)
Cộng các BĐt trên ta có
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)
Áp dụng BĐT buniacoxki ta có
\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)
Kết hợp với (1) ta được ĐPCM
Dấu bằng xảy ra khi a=b=c
giúp gấp vs mấy bn:
Tìm a,b,c ϵ Q
a)
\(\frac{a}{b}=\frac{c}{d}\left(ac\ne bd\right)Cm:\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b)CMR nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)thì\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
b)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho đa thức
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
giúp với làm dc tui tick cho
Vì a/b=b/c=c/d=>(a+b+c)/(b+c+d)=a/b.=>(a+b+c/b+c+d)3=(a/b)3=a/b.a/b.a/b
Mà a/b=b/c=c/d=>(a+b+c/b+c+d)3=a/b.b/c.c/d=(a.b.c)/(b.c.d)=a/d
=>ĐPCM
Cho \(\frac{a}{b}=\frac{c}{b}\) CM :
a )\(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
b ) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\Leftrightarrow\left(\frac{bk-b}{dk-d}\right)^2=\frac{bkb}{dkd}\)
Xét VT \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(a=bk\)
\(c=dk\)
a) Ta có:
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)
b) Ta có:
\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{d}{b}\right)^3\) (1)
\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) suy ra\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\) (đpcm)
b)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\Leftrightarrow\left(\frac{bk+b}{dk+d}\right)^3=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}\)
Xét VT \(\left(\frac{bk+b}{dk+d}\right)^3=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3k^3-b^3}{d^3k^3-d^3}=\frac{b^3\left(k-1\right)}{d^3\left(k-1\right)}=\frac{b^3}{d^3}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) với b+c+d khác 0.
Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3-d^3}=\left(\frac{a+d-c}{b+c-d}\right)^3\)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
Cho \(\frac{a}{b}=\frac{c}{d}\)CM rằng
a)\(\frac{11.a+3.b}{11.c+3.d}=\frac{3.a-11.b}{3.c-11d}\)
b)\(\frac{1111.c-99.d}{9999.c-11.d}=\frac{1111.a-99.b}{9999.a-11.b}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{11a+3b}{11c+3d}=\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\) (1)
\(\frac{3a-11b}{3c-11d}=\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\) (đpcm)
b) Ta có:
\(\frac{1111c-99d}{9999c-11d}=\frac{1111dk-99d}{9999dk-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (1)
\(\frac{1111a-99b}{9999a-11b}=\frac{1111bk-99b}{9999bk-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (2)
Từ (1) và (2) suy ra \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\) (đpcm)