tìm các số nguyên x,y thỏa mãn x>ý>1va 2x+2y+1chia hết cho xy
tìm các số nguyên x,y thỏa mãn x>y>1va 2x+2y+1chia hết cho xy
tìm các số nguyên x,y thỏa mãn: x>y>1 và 2x+2y+1chia hết cho xy
Tìm các số nguyên x, y thỏa mãn: x > y > 1 và 2x+2y+1 chia hết cho xy
tìm các số nguyên x;y thỏa mãn
2y^2x+x+y+1=x^2+2y^2+xy
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
Tìm các cặp số nguyên dương (x;y) thoả mãn 1 trong các điều kiện sau: 1)2x+2y-3 chia hết cho xy
2)x+2y+1 chia hết cho xy
Tìm các số nguyên x,y thỏa mãn \(2y^2x+x+y+1=x^2+2y^2+xy\)
Tìm all các cặp số nguyên dương(x,y) thỏa mãn 2x^2-xy-x-2y+1=0