giải phương trình:x^4+(x^2+1)*căn x^2+1-1=0
TA CÓ : \(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
ĐẶT \(\sqrt{x^2+1}=y\left(y>0\right)\)
\(\Rightarrow x^4=\left(y^2-1\right)^2\)
Từ Đó Ta Có pt mới : \(\left(y^2-1\right)^2+y^3-1=0\left(y>0\right)\)
\(\Rightarrow y^4+y^3-2y^2=0\)
\(\Rightarrow y^2\left(y^2+y-2\right)=0\)
\(\Rightarrow y^2\left(y-1\right)\left(y+2\right)=0\)
\(\Rightarrow y=1\left(y>0\Rightarrow y\notin\left(-2;0\right)\right)\)
\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x=0\)
VẬY PT trên có nghiệm duy nhất X = 0
giải hệ phương trình:
x y ( 4 x y + y + 4 ) = y 2 ( 2 y + 5 ) − 1
2 x y ( x − 2 y ) + x − 14 y = 0
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
giải phương trình:x^2+5x+1=(x+5)nhân căn của x^2+1
câu 1:
1)giải phương trình:x(3+x)=4
2)giải hệ phương trình:\(\left\{{}\begin{matrix}2x-3y-1=0\\\dfrac{x}{2}=\dfrac{2y+1}{3}\end{matrix}\right.\)
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
giải phương trình:x5=x4+x3+x2+x+2
ai dung minh tick cho
Theo bài ra , ta có :
\(x^5=x^4+x^3+x^2+x+2\)
\(\Leftrightarrow x^5-1-\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)(1)
Ta tiếp tục xét phương trình này
\(x^4+x^3+x^2+x+1=0\)(2)
Nhân cả hai vế của phương trình (2) cho x - 1 , ta được
\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\)(3)
Phương trình (3) có nghiệm bằng x = 1 , nhưng giá trị này không thỏa mãn ở phương trình (2)
=) ptvn
Suy ra phương trình (1) có dạng
\(x-2=0\)
\(\Leftrightarrow x=2\)
Tập nghiệm của phương trình là S={2}
Chúc bạn học tốt =))
giải phương trình:x\(^2\)+2x+2|x+1|-2=0
Em mới học lớp 6 thôi . Đợi hai năm nữa em giải cho !
ta co |x+1| =x+1 khi x lon hon hoac bang -1 ; |x+1|= - (x+1) khi x nho hon -1 th1 : x lon hon hoac bang 1 thi x^2+2x+2x+2-2=0 suy ra x=0 hoac x=-4 th2: x nho hon -1 thi x^2+2x-2x-2-2=0 suy ra x=2 hoac x=-2
giải phương trình:x^4-10x^2+9=0;
x^2-3x-18=0;
\(x^4-10x^2+9=0\)
\(\Leftrightarrow x^4-x^2-9x^2+9x=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2\right)\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-9\right)\left(x-1\right)=0\)
<=> x - 1 = 0 (vì x3 + x2 - 9)
<=> x = 1
a) Ta có: \(x^4-10x^2+9=0\)
\(\Rightarrow x^4-x^2-9x^2+9=0\)
\(\Rightarrow x^2\left(x^2-1\right)-9\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x^2-1\right)=0\)
\(\Rightarrow x^2-9=0\)hoặc \(x^2-1=0\)
\(\Rightarrow x^2=9\)hoặc \(x^2=1\)
\(\Rightarrow\)x= -3 hoặc x = 3 hoặc x = -1 hoặc x = 1.
b) \(x^2-3x-18=0\)
\(\Rightarrow x^2+6x-3x-18=0\)
\(\Rightarrow x\left(x+6\right)-3\left(x+6\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+6\right)=0\)
\(\Rightarrow x-3=0\)hoặc \(x+6=0\)
\(\Rightarrow x=3\)hoặc \(x=-6\).
Chúc bn hc tốt! ^_^
#Ttql nhia mn!