Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy minh
Xem chi tiết
Nguyễn Thị Thương Hoài
23 tháng 12 2022 lúc 10:55

loading...

Nhật Minh Đỗ Hữu
Xem chi tiết
Tai Nguyen
27 tháng 10 2023 lúc 20:22

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Dream
25 tháng 12 2021 lúc 10:30

Thank you

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 13:15

Lê Đình Bảo
Xem chi tiết
Tạ Lương Minh Hoàng
29 tháng 12 2015 lúc 16:02

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

Nguyễn Vũ Thu Hằng
Xem chi tiết
Darlingg🥝
29 tháng 12 2021 lúc 19:36

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

Khách vãng lai đã xóa
Dương Đỗ Hoàng
30 tháng 10 2023 lúc 21:44

TÔI KO BIẾT

 

Nguyễn Vũ Thu Hằng
Xem chi tiết
Lê Song Phương
29 tháng 12 2021 lúc 19:29

Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)

Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)

Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.

Khách vãng lai đã xóa
Việt Anh v2
29 tháng 12 2021 lúc 19:28

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa
Hồ Xuân Thái
Xem chi tiết
FC TF Gia Tộc và TFBoys...
23 tháng 1 2016 lúc 14:47

Dễ mà 

Ta có ƯC( 2n+1 và 3n+1) là d

=> 2n+1 và 3n+1 chia hết cho d

=> 3(2n+1) chia hết cho d

=> 2(3n+1) chia hết cho d

=> 6n+3và 6n+2 chia hết cho d

=> 6n+3 - 6n+2 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯC( 2n+1 và 3n+1)=1

=> đpcm 

We_are_one_Nguyễn Thị Hồ...
23 tháng 1 2016 lúc 14:43

bài này rất hóc búa!

vào câu hỏi tương tự nha!

Hồ Xuân Thái
23 tháng 1 2016 lúc 14:46

                Giải:

Gọi d là ƯCLN ( 2n + 1 ; 3n + 1 ) => 2n + 1 :: d , 3n + 1 :: d ( :: là chia hết )                                                     

=> 3( 2n + 1 ) - 2( 3n + 1 ) :: d

=> ( 6n + 3 ) - ( 6n + 2 ) :: d

=> 1 :: d => d = 1

=> 2n + 1 và 3n + 1 là hai nguyên tố cùng nhau.

Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!