Chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau(với n \(\notin N\)
Chứng minh rằng 2n+ 1 và 3n + 1 là hai số nguyên tố cùng nhau ( với n thuộc N )
chứng minh rằng: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. ( với n thuộc N
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)
Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)
Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau
Chứng minh rằng 2n + 1 và 3n + 1 ( n thuộc N ) là hai nguyên tố cùng nhau.
Dễ mà
Ta có ƯC( 2n+1 và 3n+1) là d
=> 2n+1 và 3n+1 chia hết cho d
=> 3(2n+1) chia hết cho d
=> 2(3n+1) chia hết cho d
=> 6n+3và 6n+2 chia hết cho d
=> 6n+3 - 6n+2 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯC( 2n+1 và 3n+1)=1
=> đpcm
bài này rất hóc búa!
vào câu hỏi tương tự nha!
Giải:
Gọi d là ƯCLN ( 2n + 1 ; 3n + 1 ) => 2n + 1 :: d , 3n + 1 :: d ( :: là chia hết )
=> 3( 2n + 1 ) - 2( 3n + 1 ) :: d
=> ( 6n + 3 ) - ( 6n + 2 ) :: d
=> 1 :: d => d = 1
=> 2n + 1 và 3n + 1 là hai nguyên tố cùng nhau.
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn