Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiếu Gia Họ Nguyễn
Xem chi tiết
Anh Quynh
Xem chi tiết
Akai Haruma
28 tháng 2 2022 lúc 0:43

Lời giải:

a.

$\widehat{HEB}=90^0$ (góc nt chắn nửa đường tròn) 

$\widehat{HFC}=90^0$ (góc nt chắn nửa đường tròn)

$\widehat{EAF}=90^0$ (gt) 

$\Rightarrow AEHF$ là hcn 

b. Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABH$ vuông tại $H$, đường cao $HE$ ta có:

$AE.AB=AH^2$ 

Tương tự: $AF.AC=AH^2$

$\Rightarrow AE.AB=AF.AC$

$\Rightarrow BEFC$ là tứ giác nội tiếp 

c. Đã cm ở phần b.

Akai Haruma
28 tháng 2 2022 lúc 0:44

Hình vẽ:

Anh Quynh
Xem chi tiết
Dương quốc thế
Xem chi tiết
Anh
19 tháng 5 2018 lúc 18:43

a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AEHF có góc A=gócE=góc F=90°

suy ra AEHF là hcn.

b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)

ta lại có: góc AHE=ABH(cùng bù với BAH) (2)

từ 1 và 2 suy ra góc AFE=ABH

mà góc CFE+AFE=180°

suy ra góc CFE+ABH=180°

suy ra BEFC nội tiếp

c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC

gọi O là giao điểm AH và EF

vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O

suy ra góc OFH=OHF

vì CFH vuông tại F suy ra KC=KF=KH

suy ra tam giác HKF cân tại K

suy ra góc KFH=KHF

mà góc KHF+FHA=90°

suy ra góc KFH+HFO=90°

suy ra EF là tiếp tuyến của đtròn tâm K

tương tự EF là tiếp tuyến đường tròn tâm I

vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC

๖ۣۜNɦσƙ ๖ۣۜTì
5 tháng 6 2019 lúc 8:35

a)

1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAEH = 900 (vì là hai góc kề bù). (1)

ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAFH = 900 (vì là hai góc kề bù).(2)

ÐEAF = 900 ( Vì tam giác  ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)

b)  Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn

=>ÐF1=ÐH1 (nội tiếp chắn cung AE) .

Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn  (O1) và (O2)     

 => ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800  mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

c)

Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .

DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.

=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900

=> O1E ^EF .

Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròndường kính BH và HC.

a)Ta có góc BEH =90 độ (góc nội tiếp chắn nửa đường tròn)

và góc FHC = 90 độ (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác AFHE , ta có:

góc EAF =90 độ (tam giác ABC vuông tại A)

góc AEH =90 độ (cmt)

góc AFH=90 độ (cmt)

=> tứ giác AFHE là hình chữ nhật (tứ giác có 3 góc vuông)

b)Gọi I là giao điểm của AH và EF

Ta có: AH=EF (hcn AFHE) (1)

mà 2 đường chéo AH và EF cắt nhau tại I (vẽ thêm)

=>I là trung điểm của AH và EF (2)

từ (1) và (2)=> IE=IH=IA=IF

Ta có: góc IHF =góc ACH (phụ với góc HAC)

mà góc IHF = góc IFH (tam giác IHF cân tại I (IH=IF) )

=>góc ACH = góc IFH (cùng = góc IHF)

mà góc IFH= góc AEF (2 góc so le trong của AE song song HF(cùng vuông góc AC))

=>góc AEF =góc ACH=>tứ giác BEFC nội tiếp đường tròn

c)Gọi J là tâm của nửa đường tròn đường kính BH

và K là tâm của nửa đường tròn đường kính HC

Ta có: tam giác KFC cân tại K (KF=KC)

=>góc KFC = góc KCF mà góc KCF=góc IFH (cmt)

=>góc KFC =góc IFH (cùng =góc KCF)

mà góc KFC + góc HFK =90 độ (góc HFC =90 độ)

=>góc IFH + góc HFK =90 độ => góc IFK =90 độ

=>EF là tiếp tuyến của nửa (K) (I thuộc EF) (3)

Ta lại có: tam giác JEH cân tại J (JE=JH)

=> góc JEH =góc JHE

mà góc JHE = góc HCF ( 2 góc so le trong của HE song song CA ( cùng vuông góc AB) )

và góc HCF = góc AEF (cmt)

=>góc JEH= góc AEF

mà góc AEF + góc HEF = 90 độ (góc HEA = 90 độ)

=>góc JEH + góc HEF =90 độ => góc JEF = 90 độ

=>EF là tiếp tuyến của nửa (J) (4)

Từ (3) và (4) => EF là tiếp tuyến chung 2 nửa dường tròn dường kính BH và HC

chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 0:46

a: góc HEB=1/2*180=90 độ

=>HE vuông góc AB

góc CFH=1/2*180=90 độ

=>HF vuông góc AC

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hcn

b: góc AEF=góc AHF=góc C

=>góc FEB+góc C=180 độ

=>FEBC nội tiếp

c: gọi I,K lần lượt là trung điểm của BH,CH

góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>FE là tiếp tuyến của (I)

góc KFE=góc KFH+góc EFH

=góc KHF+góc EAH

=góc HAB+góc HBA=90 độ

=>EF là tiếp tuyến của (K)

chanh
Xem chi tiết
chanh
19 tháng 5 2022 lúc 20:35

huhu mmn oi

chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 0:48

loading...

loading...

 

Nguyễn Thị Hải Yến
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Đăng Trình Phạm
Xem chi tiết