a) Cho A = \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\); B + \(\frac{2011+2012}{2012+2013}\)
Trong hai số A và B, số nào lớn hơn?
b) Viết phân số \(\frac{7}{16}\)thành tổng của hai phân số tối giản có mẫu khác nhau
CHO : \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
VÀ : \(B=\frac{2010+2011+2012}{2011+2012+2013}\)
SO SÁNH A VÀ B
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
cho \(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2013}{2012+2013}\)So sánh A và B
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(\frac{A^{2011+2012}}{A^{2012+2013}}\)VÀ\(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
So sánh
Ta có
\(\frac{A^{2011}}{A^{2012}}=\frac{A^{2012}}{A^{2103}}=\frac{A}{A^2}\)
=> \(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}=\frac{2A}{A^2}\)
\(\frac{A^{2011+2012}}{A^{2012+2013}}=\frac{A^{4023}}{A^{4025}}=\frac{1}{A^2}\)
=> \(\frac{A^{2011+2012}}{A^{2012+2013}}< \frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
so sánh \(A=\frac{2011+2012}{2012+2013}vàB=\frac{2011}{2012}+\frac{2012}{2013}\)
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}
Tách A ra thành 2 phân số cùng tử(dễ thôi).
So sánh mỗi phân số với 1 phân số tương ứng ở B.
=>A<B.
Vậy A<B.
So sánh \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
Ta có :
\(B=\frac{1011}{2012+2013}\)+\(\frac{2012}{2012+2013}\)=\(\frac{2011+2012}{2012+2013}\)
Vì:
\(\frac{2011}{2012+2013}\)<\(\frac{2011}{2012}\); \(\frac{2012}{2012+2013}< \frac{2012}{2013}\)
=> \(\frac{2011+2012}{2012+2013}< \frac{2011}{2012}+\frac{2012}{2013}\)
Mà \(\frac{2011+2012}{2012+2013}\)=B ; \(\frac{2011}{2012}+\frac{2012}{2013}\)
Vậy A <B
So sánh \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)
Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\) ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)
\(\Rightarrow B>A\)
So sánh:
A=\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
B=\(\frac{2010+2011+2012}{2011+2012+2013}\)
cậu tra trên mạng í lắm lắm
Cho A=\(\frac{2011}{2012}+\frac{2012}{2013}\); B=\(\frac{2011+2012}{2012+2013}\)
Trong hai số A và B số nào lớn hơn ?
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2012+2013}\)
Vậy A > B
so sánh
A=\(\frac{2011+2012}{2012+2013}\) và B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
Ta có :
A=\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\left(1\right)\)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\left(2\right)\)
Từ (1) và (2) suy ra A<B
Đầu tiên:
Ta có:
B=\(\frac{2011}{2012+2013}\)+ \(\frac{2012}{2012+2013}\) = \(\frac{2011+2012}{2012+2013}\)
Vì:
\(\frac{2011}{2012+2013}\)< \(\frac{2011}{2012}\); \(\frac{2012}{2012+2013}\)< \(\frac{2012}{2013}\)
\(\Rightarrow\)\(\frac{2011+2012}{2012+2013}\)< \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)
Mà \(\frac{2011+2012}{2012+2013}\)= B; \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)
Vậy B>A