Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Minhquang
8 tháng 2 2016 lúc 21:51

28/29=0,96551.......

mà a, b , c là số tự nhiên nên mình thử ra là 1/2+1/3+1/7 là nhỏ nhất

Tổng nhỏ nhất là 2+3+7=12

Minhquang
8 tháng 2 2016 lúc 22:00

Mình thử đi thử lại rồi đúng

chonj số a,b,c nhỏ nhất là 2 trở lên thì

1/2+1/3+1/4 ko

1/2+1/3+1/5 ko

1/2+1/3+1/6 ko

1/2+1/3+1/7 chọn

 

nguyen thuylinh
Xem chi tiết
Hoàng Phúc
23 tháng 2 2016 lúc 14:22

Để tính GTNN của P=a+b+c thì ta cực tiểu hóa a,b và c (*)

Không giảm tính tổng quát,giả sử \(1\le a\le b\le c\) \(\Rightarrow\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\Rightarrow\frac{28}{29}<\frac{3}{a}\)=>1<a<3 và 3/28 =>a E {2;3} do a E N

\(\)

+)a=2=>b>2 từ (*) chọn b=3 và c=7 vì 1/2+1/3+1/7=41/42 mà 28/29<41/42<1

+)a=3=>c >= b >= 3,nếu a=b=c=3 thì 1/a+1/b+1/c=1

Nếu a=3;b ,c >= 4 thì 1/a+1/b+1/c <= 1/3+1/4+1/4=5/6<28/29(loại a=3)

Vậy (a+b+c)min=2+3+7=12

nguyen thuylinh
23 tháng 2 2016 lúc 17:44

nhè mọi người giải giúp tôi nhanh lên!

huy
11 tháng 4 2018 lúc 20:19

ko hiểu 

huy
Xem chi tiết
Nguyễn Hoàng Hải Đăng
Xem chi tiết
Nghiêm Xuân Sơn
27 tháng 3 2016 lúc 11:34

a=3

b=5

c=5

Nghiêm Xuân Sơn
27 tháng 3 2016 lúc 11:35

a=3

b=5

c=5

Hoàng Văn Giang
27 tháng 3 2016 lúc 11:50

tao không hiểu

Mai Hiệp Đức
Xem chi tiết
abcde
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyen Thi Mai
5 tháng 9 2016 lúc 15:17

 2.

Vì 0<a<b<c nên tổng 2 số nhỏ nhất trong tập hợp A là 
(abc)+(acb)=(100a+10b+c)+(100a+10c+b) 
=200a+11b+11c=200a+11(b+c). 
Vậy 200a+11(b+c)=488 (*) 
Từ (*) =>a<3 =>a chỉ có thể là 1 hoặc 2 
+Nếu a=1 =>11(b+c)=288 => vô nghiệm vì b+c=288/11 không nguyên 
+Nếu a=2 =>11(b+c)=88 =>b=3; c=5 (vì a<b<c) 
=>a+b+c=2+3+5 = 10.

Nguyễn Thị Thu Hường
Xem chi tiết
Trương Việt Khôi
11 tháng 4 2018 lúc 21:32

Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23

Hiệu của 31 va 29:31-29=2

Thương của phép chia cho 31 là:

(29-23):2=3

Số cần tìm là:

31*3+28=121

DS :121

b)1/a + 1/b + 1/c=1 / (a + b + c) 
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0 
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau) 
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0. 
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0 
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0 
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0 
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0 
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)

Nguyễn Trần Trúc Ly
Xem chi tiết