cho tam giác ABC , hai trung tuyến AD và BE cắt nhau tại G . trên cạnh AB lấy hai điểm M và N sao cho AM=BN . Gọi F là trung điểm của MN . Gọi K là trung điểm của CN . Chứng minh M,G,K thẳng hàng
Cho tam giác ABC có 2 đường trung tuyến AD và BE cắt nhau tại G. Trên cạnh AB lấy 2 điểm M,N sao cho AM=BN. Gọi F là trung điểm của MN
Cm: C,G,F thẳng hàng
Gọi K là trung điểm của CN. Cm: M,G,K thẳng hàng
Cho tam giác ABC có 1 trung tuyến AD và BE cắt nhau tại G. Trên AB lấy 2 điểm M và N scho AM=BN và M nằm giữa A và N. Gọi F là giao diểm MN.
a, Cm C,G,F thẳng hàng
b, Gọi K là trung điểm CN. Cm M, G, K thẳng hàng
cho tam giác ABC có 2 đường trung tuyến BE và AD cắt nhau tại G. Trên cạnh AB lấy hai điểm m,N sao cho AM=BN. Gọi F là trung điểm của BN
a) CM: C,G,F thẳng hàng
b) Gọi k là trug điểm của CN. cm: M,G,K thẳng hàng
Cho tam giác ABC nhọn ( AB<AC) đường trung tuyến am. Trên tia đối của MA lấy điểm D sao cho MD=MA
a) CM tam giác AMB và tam giác DMC và AB // CD
b) Gọi F là trung điểm của CD . Tia FM cắt AD tại K . CM M là trung điểm của KF
c) gọi C là trung điểm của AC. BE cắt Am tại G,I là trung điểm của AF. CM: K,G,I Thẳng hàng
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD
cho tam giác ABC có AB = AC , Gọi D là trung điểm của cạnh BC
a, chứng minh tam giác ABD = tam giác ACD và AD vuông tại BC
b, vẽ DM vuông góc cs AB tại M . Trên cạnh AC lấy điểm N sao cho AN = AN . gọi I là giao điểm của AD và MN chứng minh AD vuông góc MN tia I
C, gọi K là trung điểm của CN , Trên tia DK lấy điểm E sao cho K là trung điểm của DE . Chứng minh M,N,E thẳng hàng
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Bài 1:
Cho tam giác ABC. Trên cạnh BC lấy điểm G sao cho BG=2CG. Trên tia AC lấy điểm D sao cho C là trung điểm của AD và gọi M là trung điểm của BD. Chứng minh A,G,M thẳng hàng
Bài 2:
cho tam giác ABC với ba trung tuyến AM,BN,CQ và trọng tâm G. Trên BN,CQ lần lượt lấy các điểm D,E sao cho BD=1/3BN, CE=1/3CQ. Chứng minh ba đường thẳng AM,BE,CD đồng quy
Bài 3:
Cho tam giác. Gọi M,N lần lượt là trung điểm của BC,AC. Trên AM lấy điểm G sao cho AG=2MG. Chứng minh B,G,N thẳng hàng?
Giúp mình với huhu :((
Cho tam giác ABC. Hai đường trung tuyến AM và CN cắt nhau tại G. Trên tia đối của tia AM lấy điểm E sao cho ME = MG.
a) Chứng minh rằng BG song song với EC.
b) Gọi I là trung điểm của BE, AI cắt BG tại F. Chứng minh rằng AF = 2FI
Tham khảo:
a) Xét tam giác BGM và tam giác CEM có :
\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)
GM = ME (do G đối xứng E qua M)
MB = MC (do M là trung điểm của BC)
\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)
\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)
Mà 2 góc trên ở vị trí so le trong nên BG⫽CE
b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE
Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE
Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE
\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)
Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF
\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)
\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)
\( \Rightarrow \) AF = 2 FI