Bài 4: Tìm tất cả nghiệm nguyên của phương trình
a) \(5x-11y=4\)
b) \(7x+5y=143\)
c) \(23x+53y=109\)
Tìm tất cả nghiệm nguyên của phương trình
a,2x+y=0
b,3x-2y=5
c,2x+5y=15
d,5x-11y=4
e,7x+5y=143
f,23x+53y=109
Mọi người giúp mk với.
Tìm nghiệm nguyên dương của phương trình
a,\(5x-y=13\)
b,\(23x+53y=109\)
ý bạn a và b là 1 hệ pt hả chứ để riêng sao giải. Nếu giải hệ thì là như sau:
5x-y=13<=> y=5x-13. Thay vào pt b ta có: 23x+53(5x-13)=109 <=> 23x+265x=109+53.13. đến đây bạn tự giải
Giải phương trình nghiệm nguyên sau:
23x+53y=109
\(\Leftrightarrow23x+53y=23.37-53.14\)
\(\Leftrightarrow53y+53.14=23.37-23x\)
\(\Leftrightarrow53\left(y+14\right)=23\left(37-x\right)\)
Do 53 và 23 nguyên tố cùng nhau \(\Rightarrow y+14⋮23\)
\(\Rightarrow y+14=23k\Rightarrow y=23k-14\)
\(\Rightarrow x=-53k+37\)
Vậy nghiệm của pt là \(\left(x;y\right)=\left(-53k+37;23k-14\right)\) với \(k\in Z\)
tìm ngiệm nguyên của các pt sau
a,12x-7y=45
b,3x-y=13
c,23x+53y=109
d,12x-5y=21
http://lovelove.xtreemhost.com/nguhaykhong.html?i=1
tim x,y biet
1/5x-y=13
2/23x+53y=109
3/12x-5y=21
4/12x+17y=41
1. Đơn giản hóa
5x + -1y = 13
Giải quyết
5x + -1y = 13
Giải cho biến 'x'.
Di chuyển tất cả các điều khoản có chứa x sang trái, tất cả các điều khoản khác sang phải.
Thêm 'y' vào mỗi bên của phương trình.
5x + -1y + y = 13 + y
Kết hợp như các điều khoản: -1y + y = 0
5x + 0 = 13 + y
5x = 13 + y
Chia mỗi bên cho '5'.
x = 2,6 + 0,2y
Đơn giản hóa x = 2,6 + 0,2y
P/s: Nguồn mạng Oppa :>>
Câu 3 tương tự ((:
C2:
Câu hỏi của Nguyễn Quế Dân - Toán lớp 6 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/35109045377.html
1, Tìm số tự nhiên x,y thỏa mãn:
a, 5x-y=13
b, 23x+53y=109
c, 12x-5y=21
d, 12x+17y=41
2, Tìm số nguyên x,y thỏa mãn:
a, 5(x+y)+2=3xy
b, 2(x+y)=5xy
c, 3x+7=y(x-3)
Tim x,y nguyên >0 sao cho :
a, 5x-y=13 b, 23x+53y=109
c, 12x-5y=21 d, 12x+17y=41
Tìm tất cả các nghiệm nguyên của phương trình:
a) 2x+y=0
b) 5x-11y=4
a: =>2x=-y
=>y=-2x
Vậy: \(\left\{{}\begin{matrix}x,y\in Z\\y=-2x\end{matrix}\right.\)
b: 5x-11y=4
=>5x=11y+4
=>x=11/5y+4/5
\(\Leftrightarrow\left\{{}\begin{matrix}x,y\in Z\\x=\dfrac{11}{5}y+\dfrac{4}{5}\end{matrix}\right.\)
Tìm số nguyên x;y và x;y>0 thỏa mãn
23x+53y=109
23x +53y=109
<=> x = (109 - 53y)/23 = 4 - 2y +(17-7y)/23
x nguyên nên 17-7y= 23m => y = (17-23m)/7 = 2 -3m +(3 - 2m)/7
y nguyên nên: 3 - 2m = 7n => m = (3-7n)/2 = 1 - 3n +(1 -n)/2
m nguyên nên: 1 -n = 2p => n = 1-2p
(m,n,p là số nguyên)
Từ n = 1-2p => m = 1 - 3(1-2p) + p = -2 +7p
=> y = 2 -3(-2+7p) + 1- 2p = 9 -23p
=> x = 4 - 2(9 -23p) -2 +7p = 2 -18 +46p +7p = 53p - 16.
Vậy x = 53p - 16; y = 9 - 23p