cho x,y là các số tự nhiên chứng minh rằng 3x+y chia hết cho 7 khi và chỉ khi 2x+3y chia hết cho 7
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
cho x,y là các số nguyên thỏa mãn (x-y)^2 +2xy chia hết cho 4 . Chứng minh rằng x và y đều chia hết cho 2
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.
Cho x,y là số nguyên thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng thỏa mãn chia hết cho 23 ?
xét hiệu A=5(3x-5y)-3(5x-16y)=23y
=> A chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23
Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm)
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Chứng minh x,y là các số nguyên thoả mãn x-3y chia hết cho 11 thì 3x+2y chia hết cho 11
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
Cho a, b là các số nguyên thỏa mãn :(3a+5b).(a+4b) chia hết cho 7 . Chứng minh rằng tích đó chia hết cho 49
Cho các số nguyên dương x,y,z thỏa mãn x^2+y^2=z^2. chứng minh B=x^3y-xy^3 chia hết cho 7