X x 2014-x=2014x2012+2012
ko latex
cho P(X) x2014+2013x+2012 có nghiệm dương ko vì sao?
Tìm x biết: |x-2010|+|x-2012|+|x-2014|=4
Cái lày dễ nhưng iêm ko có nhớ:< wên dạng lày ròi~
Quên mọe dạng rồi nên làm vớ vẩn 😊😊😊
Sai 100% :)))
\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|=4\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=4\\\left|x-2012\right|=4\\\left|x-2014\right|=4\end{cases}}\)
Từ đó cứ giải bth nhá :)))
Ta có:
| x - 1010 | + | x - 2012 | + | x - 2014 |
= (| x - 1010 | + | 2014 - x | )+ | x - 2012 |
\(\ge\)| x - 1010 + 2014 - x | + | x - 2012 |
= 4 + | x - 2012 |
\(\ge4\)
Mà theo bài ra thì | x - 1010 | + | x - 2012 | + | x - 2014 | = 4
Do đó: ( x - 1010 ) ( 2014 - x )\(\ge\)0 và x - 2012 = 0
<=> x = 2012 thỏa mãn
Vậy x = 2012.
tìm x biết (x+2014)/2011 + (x+2013)/2012 = (x+2012)/2013 + (x+2011)/2014
Giúp nha , tính gọn cho mk bài này vs : 2012 + 2013 x 2014 / 2014 x 2015 - 2016 = ? . Mk ko bt vt phân số , mog m.n thông kẻm nhoa ^^ !
phân số sẽ bằng 1
vì tử = mẫu
nhé !
Đ/s : =1
\frac{x-10}{2010}+\frac{x-8}{2012}+\frac{x-6}{2014}+\frac{x-4}{2016}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2016}{4}+\frac{x-2014}{6}+\frac{x-2012}{8}+\frac{x-2010}{10}
2012 + 2013 x 2014 / 2014 x 2015 -2016
2012 + 2013 x 2014 / 2014 x 2015 -2016 = 1
mình trả lời đầu tiên nha
bn giải tri tiết giùm mình được không
2013 x 2014 +2012 / 2015 x2015 -2016=4054182+2012 / 4058210 - 2016= 4056194/4056194=1
Tính nhanh: 2014 x 2014 + 2016 x 2012
\(2014^2+\left(2014+2\right)\left(2014-2\right)=2014^2+2014^2-4=2\times2014^2-4\)
2014 x2014+2016 x 2012
=2014+2016 x 2012
=(2014+2016) x 2012
=2012 x 4036
????????
ah hihihi do ngoc
1+x/2014+x+2/2012+x+3/2012=x+10/2005+x+11/2004+x+12/2003 tim x
Cho x+y+z=2016 và 1/x+1/y+1/z=1/2016. Tính giá trị biểu thức B=(x^2012+y^2012)(y^2014+z^2014)(z^2016+x^2106)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)
\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)
\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\) hoặc y+z=0
Do đó ta có B=0