Có 3 số thực x,y,z có tổng là 114 và có tích là 46656 . Nếu y = xk và z = xk^2 ( k là 1 số thực ) thì giá trị của x + z là ...
Cho ba số thực x,y,z có tổng là 144 và có tích là 46656.Nếu y=xk và z=xk2 ( k là 1 số thực), thì giá trị của x+z=?
\(x+z=144-y;xyz=\left(xk\right)^3=y^3=46656\Rightarrow x+z=144-\sqrt[3]{46656}\)
PT con 46656 xem
=36.1296=36.9.144=3.12.9.12.12=(3.12)^3
x+z=0
Cho 3 số thực x, y, z có tổng là 114 và có tích là 46656. Nếu \(y=xk\) và \(z=x^2k\) (k là 1 số thực), thì giá trị của x+z=?
x+z=114-y=114-xk
xyz=(xk)^3=46656=36^3=> xk=36
x+z=114-36=78
cho ba số thực x,y,z có tổng là 114 và tích là 46656. Nếu y=xk và z=xk^2 thì x+z=?
Ta có: xyz=46656
<=> x.xk.xk^2=46656
<=> x^3k^3=46656
<=> xk=36 hay y=36
<=> x+y=144-y=144-36=108
cho x + y + z = 144 và xyz = 46656 nếu y = xk và z = xk^2 ( k là 1 số thực ) thì x + z = ?
Có ba số thực x,y,z có tổng là 114 và có tích là 46656 Nếu y=xk và \(x=xk^2\) (k là 1 số thực)
thì giá trị của x+z là
xyz = 46656
x . xk . xk2 = 46656
x3k3 = 46656
xk = \(\sqrt[3]{46656}\)
xk = 36
y = 36
x + y + z = 114
x + z + 36 = 114
x + z = 114 - 36
x + z = 78
ĐS: 78
cho ba số thực x,y,z có tổng là 114 và tích là 46656. Nếu y=xk và z=xk^2 thì x+z=?
BAI1 :phuong trinh vo nghiem neu tham so m bang bao nhieu biet :
m^2x+m=3mx+3
BAI2 : ba so thuc x,y,z co x+y+z =114 va xyz=46656. neu y=xk ; z=xk^2 thi x+z bang bao nhieu ?
xyz=46656
\(\Leftrightarrow x.xk.xk^2=46656\Leftrightarrow x^3.k^3=46656\Leftrightarrow\left(xk\right)^3=46656\Rightarrow xk=36\)Ta có xk=36=> y=36
Vậy \(x+z=114-y=114-36=78\)
.cho x,y,z là 3 số thực tuỳ x+y+z=0 và -1≤x≤1,-1≤y≤1,-1≤z≤1
CMR đa thức x2 + y4 + z4 có giá trị k lớn hơn 2
Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.
Thay các giá trị vào đa thức, ta có:
x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.
Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:
f'(a) = 2a + 4a^3
Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:
2a + 4a^3 = 0 a(1 + 2a^2) = 0
Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.
Ta tính giá trị của đa thức tại các điểm cực tiểu:
f(0) = 0^2 + 0^4 = 0
f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536
f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536
Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.
Chứng Minh Rằng nếu có dãy tỉ số a/x=b/y=c/z thì giá trị của tỉ số ak^2+bk+c/xk^2+yk+z không phụ thuộc vào giá trị của k
Câu hỏi của Oo_ Love is a beautiful pain _oO - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link trên nhé!