Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan M
Xem chi tiết
Phan M
24 tháng 8 2021 lúc 7:49

Mọi người giúp mình trong hôm nay vứiiii ;-;

Hquynh
24 tháng 8 2021 lúc 8:16

hình e tự vẽ nhé

 a) Xét tam giác BHA vuông tại H có

góc B + góc HAB = 90 độ  ( hai góc phụ nhau)

40 độ  + góc HAB = 90 độ

=> góc HAB = 50 độ 

mà góc HAB + góc HAC =  90 độ ( tam giác ABC có góc A = 90 độ)

Ta lại có góc HAC + Góc C = 90 độ ( hai góc phụ nhau )

=>  góc HAB = góc C = 50 độ

 

Phan M
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 0:06

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

\(\Leftrightarrow\widehat{C}=90^0-40^0=50^0\)

Nguyễn Lê Trình
Xem chi tiết
Ngô Huyền Anh
11 tháng 8 2017 lúc 9:02

a, chứng minh tứ giác ADHB nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác. 
Ta có: 
ADB^ = 1v (gt) 
AHB^ = 1v (gt) 
=> ABHD nội tiếp đường tròn đường kính AB. 
Tâm O là trung điểm AB. 

b, chứng minh góc EAD bằng HBD và OD song song HB: 
Ta có: 
EAD^ = ABD^ (1) ( có cạnh L) 
BD là phân giác nên: 
ABD^ = HBD^ (2) 
(1) và (2) => EAD^ = HBD^. 

*cm OD song song HB: 
tam giác BOD cân và có góc AOD là góc ngoài của tam giác BOD => AOD^ = 2.ABD^ = ABC^ 
=> OD //Bc vì có 2 góc ở vị trí đồng vị = nhau. 

c, chứng minh tứ giác HCED nội tiếp: 
Ta có: 
CHD^ = 90*- AHD^ 
mà AHD^ = ABE^ ( cùng chắn cung AD) 
=> CHD^ = 90* - ABE^ (1) 
mặt khác: 
BEC^ = 180* - AEB^ 
mà AEB^ = 90 - ABE^ 
=> BEC^ =180* - 90* + ABE^ = 90* + ABE^ (2) 
(1) + (2): 
CHD^ + BEC^ = 90* - ABE^ + 90* + ABE^ = 180* 
vậy tứ giác HCED nội tiếp đường tròn. 

d, cho biết góc ABC bằng 60 độ và AB = a (a> 0 cho trước). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn O: 
Diện tích tam giác ABC phần nằm ngoài đường tròn (gọi là S) là phần diện tích giới hạn bỡi AC, AH và cung (ADH). và S = diện tích tam giác ABC - diện tích giới hạn bỡi AB, BH và cung (ADH) (gọi là S1) 

* tính S(ABC): 
tam giác L ABH có: 
AH = a.sin 60* = a.√3/2 
BH = a/2 ( đối diện góc 30* = 1/2 cạnh huyền) 
tam giác L ABC có: 
BC = a/cos 60* = 2a. 
=> S(ABC) = AH.BC/2 = (a.√3/2).(2a)/2 = a^2√3/2 

* tính S1: 

dễ thấy:S(BOH) = S(ABH)/2 = AH.BH/4 = (a.√3/2).(a/2)/4 = a^2√3/16 
tam giác cân OBH có OBH^ = 60* => BOH^ = 60* 

S3 = diện tích hình quạt OBH = (60*/360*).OB^2.TT = 1/6.a^2/4.TT = a^2.TT/24 

S4 =diện tích giới hạn bỡi BH và cung (BH) = S3 - S(BOH) 
= a^2.TT/24 - a^2√3/16 = a^2(TT/3 -√3/2)/8 

S1 = diện tích 1/2 đường tròn - S4 
= a^2.TT/8 - a^2(TT/3 -√3/2)/8 
= a^2(TT - TT/3 + √3/2)/8 
= a^2(2TT/3 + √3/2)/8 

vậy: 
S = S(ABC) - S1 = a^2√3/2 - a^2(2TT/3 + √3/2)/8 
=(a^2/2).[(√3 - (2TT/3 + √3/2)/4] 
= a^2(45√3 -4TT)/96 
-----bạn kiểm tra lại số liệu tính toán. 

Bài 2: 
a, Chứng minh AM. AE = AC^2: 
(AB) là kí hiệu cung AB 
Ta có: 
sđ ACM^ = sđ (AM)/2 = sđ(AC -CM)/2 = sđ AEB^ 
=> tam giác ACM đồng dạng với ACE. (g.g.g) cho ta: 
AC/AE =AM/AC =>AM. AE = AC^2 

b, DM cắt BC tại I, AI cắt đường tròn O tại N. Chứng minh D, N, E thẳng hàng. 
tam giác ADE có 
DM L AE ( AMD^ = 1v góc nội tiếp chăn1/2 đường tròn) 
EH L AD ( H là giao của AD và BE) 
vậy EH và DM là 2 đường cao 
=> AI L DE 
mặt khác 
DN L AI ( góc AND^ nội tiếp chắn 1/2 đường tròn) 
=> DN // DE và có D chung => D, N, E thẳng hàng. 

c, Cho BAC = 45độ. Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và cung BDC: 
Ta có: 
BOC^ = 2.BAC^ = 90* 
( góc ở tâm = 2 lần góc nội tiếp cùng chắn cung BC. 
=> cung (BDC) = 2.TT.R/4 = TT.R/2 
tam giác BOC là tam giác L cân tại O nên: 
BC = R.√2 => BH = BC/2=R.√2/2 
tam giác BHO là tam giác L cân, cho ta: 
BH = OH = R.√2/2. 
=> AH = OH + OA = R.√2/2 +R = R(1+√2/2) 
tam giác L AHB có: 
AB^2 = AH^2 + BH^2 
= R^2.(1+√2/2)^2 + R^2/2 
= R^2(1 + √2 + 1/2 + 1/2) 
= R^2.(2+√2) 
=> AB = R√(2 +√2 ) 
mà AB = AC => AB = AC= R√(2 +√2 ) 
chu vi hình phẳng: 
CV=cung (BDC) + AB +AC = TT.R/2 + 2.R√(2 +√2 )

~~~~~~~~~~ai đi qua nhớ để lại ~~~~~~~~~~~~

nguyen phuong thao
Xem chi tiết
Laura
14 tháng 10 2019 lúc 22:41

Xét tam giác ABC có:

^A+^B+^C=180°(đl tổng ba góc tam giác)

=>^B+^C=180°-a

Vì BI là pg ^B

=>^ABI=^IBC=1/2^B

Vì CI là pg ^C

=>^BCI=^ICA=1/2^C

Ta có:^B+^C=180°-a

=>(^B+^C)/2=(180°-a)/2

=>^IBC+^BCI=90°-a/2

 Xét tam giác BIC có:

^IBC+^BCI+^BIC=180°(đl tổng ba góc tam giác)

=>^BIC=180°-90°-a/2

=>^BIC=90°+a/2

Laura
14 tháng 10 2019 lúc 13:36

Bạn vẽ hình giúp mình nhé. Mình chỉ giải thôi nha!

1.Vì AH vuông góc với BC 

=>^AHC=90°

Xét tam giác HAC vuông tại H

=>^HAC+^C=90°

=>^HAC=90° -^C (1)

Xét tam giác ABC vuông tại A

=>^B+^C=90°

=>^B=90° - ^C (2)

Từ (1) và (2)=>đpcm

-----------------------------------------------------------------

Câu này cm tương tự

Laura
14 tháng 10 2019 lúc 13:47

Để tối tớ lm câu hai nha bạn. H tớ phải đi học r ạ

Sái Ngọc Duy
Xem chi tiết
Đoàn Đức Hà
20 tháng 7 2021 lúc 8:40

a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)

\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)

\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)

b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).

Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao

suy ra \(EK\)vuông góc với \(AD\).

Khách vãng lai đã xóa
nguyễn thị hà uyên
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
vy luong
Xem chi tiết
Lê Danh Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 9:23

a: góc B+góc C=90 độ

góc HAC+góc C=90 độ

=>góc B=góc HAC

=>góc C=góc BAH

b: góc CAD+góc BAD=90 độ

góc CDA+góc HAD=90 độ

mà góc BAD=góc HAD

nên góc CAD=góc CDA

c: ΔCAD cân tại C có CK là phân giác

nên CK vuông góc AD