Cho đa thức P(x)=ax2+bx+c.
CMR: Nếu P(1), P(4), P(9) là số hữu tỉ thì a, b, c là số hữu tỉ
cho đa thức f(x)=ax^2+bx+c sao cho f(1);f(4);f(9) là các số hữu tỉ. Chứng minh khi đó a,b,c là các số hữu tỉ
Cho đa thức P(x)=ax2+bx+c.
CMR: Nếu P(1), P(4), P(9) là số hữu tỉ thì a, b, c là số hữu tỉ
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Cho đa thức P(x)=a*x^2+b*x+c có tính chất P(1),P(4),P(9) là các số hữu tỉ.
CMR:a,b,c là các số hữu tỉ?
Cho f(x) = ax^2 + bx + c có f(1) , f(4) , f(9) là các số hữu tỉ
CMR: KHi đó a,b,c là các số hữu tỉ
1)Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.
2)Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.
Cho f(x)=\(ax^2+bx+c\) sao cho f(1);f(4);f(9) là các số hữu tỉ.CMR a;b;c là các số hữu tỉ
Theo bài ra ta có:
\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)
Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)
Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)
Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)
Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)
=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)
Ta có đpcm
cho đa thức hệ số nguyên P(x)
CMR: nếu P(x) có nghiệm hữu tỉ là c thì c là số nguyên.