5x-3x
3x3 - 5x2 + 2 - 3x(2x2 - 1) + 6(x2 - 2x +3) = x2 - 5x
<=> 3x3 - 5x2 + 2 - 3x.2x2 + 3x + 6x2 - 6.2x + 6.3 = x2 - 5x
<=> 3x3 - 5x2 + 2 - 6x3 + 3x +6x2 - 12x + 18 - x2 + 5x = 0
<=> (3x3 - 6x3) + (6x2 - 5x2 - x2) - (12x - 3x - 5x) + (18 + 2 ) = 0
<=> ...
Tìm x:
a ) (3x -5)^2 - (3x +2) (3x - 2) = 8
b ) (5x + 3) (3 - 5x) + (5x - 7) ( 5x - 7) = 1
GPT sau:
a) ( x-1)(5x+3)= (3x - 8 )(x-1)
b) 3x ( 25x + 15 )- 35 ( 5x+3) = 0
c) (2-3x ) ( x-11)=(3x-2)(2- 5x)
Giups mk vs thank cacs bn
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)
\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)
\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)
\(\Leftrightarrow2x^2+9x-11=0\)
\(\Leftrightarrow2x^2+11x-2x-11=0\)
\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)
\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)
b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)
\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)
\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)
\(\Leftrightarrow12x^2+19x-18=0\)
\(\Leftrightarrow12x^2+27x-8x-18=0\)
\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)
\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)
Cách hiểu 1:[TEX]\frac{44-x}{3}[/TEX]=[TEX]\frac{x-12}{5}[/TEX]
[TEX]\frac{220-5x}{15}[/TEX]=[TEX]\frac{3x-36}{15}[/TEX]
hay 220-5x=3x-36
=220-5x-3x+36=0
=220+36-5x-3x=0
=256-(5x+3x)=0
=256-8x=0
=8x=256
=x=32
TÌM X BIẾT :
a/ 3x ( 3x -1 ) - ( 3x + 1 ) ( 3x - 1 ) = 0
b/ \(x^2\) - 5x + 25 - 5x = 0
KHÔNG BỎ BƯỚC Ạ !
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
5x / 5x-5 = 3x+12 / 3x+3
\(\frac{5x}{5x-5}=\frac{3x+12}{3x+3}\)
\(\Leftrightarrow\frac{5x}{5\left(x-1\right)}=\frac{3\left(x+4\right)}{3\left(x+1\right)}\)
\(\Leftrightarrow\frac{x}{x-1}=\frac{x+4}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=\left(x-1\right)\left(x+\text{4}\right)\)
\(\Leftrightarrow\)\(x^2+x=x^2+3x-4\)
\(\Leftrightarrow-2x=-4\Rightarrow x=2\)
5x / 5x-5 = 3x+12 / 3x+3
3x+2/5x+7=3x-1/5x+1
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
=> \(\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
=> \(15x^2+3x+10x+2=15x^2+21x-5x-7\)
=> \(\left(15x^2-15x^2\right)+\left(3x+5x+10x-21x\right)=-7-2\) (chuyển vế)
=> \(-3x=-9\Rightarrow x=\frac{-9}{-3}=3\)
3x-1/40-5x=25-3x/5x-34
3x-1/40x-5x=25-3x/5x-34
áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}=\frac{3x-1+25-3x}{40-5x+5x-34}=\frac{24}{6}=4\)
suy ra:
\(\frac{3x-1}{40-5x}=4\)=>3x-1=4.(40-5x)
3x-1=160-20x
3x+20x=160+1
23x=161
x=161:23
x=7
vậy x=7