Tính các tổng sau bằng phương pháp hợp lí nhất:
A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/49.50
B= 2/3.5 + 2/5.7 + 2/7.9+...+ 2/37.39
Tính nhanh
1, A = 1/1.2 + 1/2.3 + 1/3.4 + 1/3.4 + ... + 1/49.50
2, B = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/37.39
3, C = 5^2/1.6 + 5^2/6.11 + ... + 5/26.31
4, D = 1/7 + 1/91 + 1/247 + 1/475 + 1/775 + 1/1147
x + 25 = 64
x = 64 - 25
x = 39
Vậy x = 39
tính: A=1 phần 1.2 +1 phần 2.3+ 1 phần 3.4+...1 phần 49.50
B=2 phần 3.5+ 2 phần 5.7+ 2 phần 7.9 +...+ 2 phần 37.39
C= 3 phần 4.7 + 3 phần 7.1 + 3 phần 10.13 + ... + 3 phần 73.76
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}=\frac{49}{50}\)
B = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
= \(2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\right)\)
= \(2.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)
= \(\frac{2}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)
= \(\frac{4}{13}\)
C = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
= \(3\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)
= \(3.\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
= \(\frac{3}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\)
= \(\frac{9}{38}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Tính các tổng sau bằng phương pháp hợp lí nhất:
2/3.5 + 2/5.7+...+2/37.39
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{37.39}\)
\(=\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{39-37}{37.39}\)
\(=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{39}{37.39}-\frac{37}{37.39}\)
\(=\)\(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{37}-\frac{2}{39}\)
\(=\frac{2}{3}-\frac{2}{39}\)
\(=\frac{8}{13}\)
Ta có: 2/3.5=1/3 - 1/5
2/5.7=1/5 - 1/7
........
2/37.39=1/37 - 1/39
2/3.5 + 2/5.7 + ... + 2/37.39=1/3 - 1/5 + 1/5 - 1/7 +..... + 1/37 - 1/39
= 1/3 - 1/39
= 36/117
Tính giá trị của các biểu thúc sau:
a,-3/5+4/5+-1/5
b,-8/15+[-5/6+8/15]
c,[2/3+-3/4+5/12]:2/3+3/4
d,A=1/1.2+1/2.3+1/3.4+.....+1/49.50
e,2/3.5+2/5.7+2/7.9+.....+2/37.39
f,C=1/6.10+1/10.14+........+1/402.406
g,D=4/5.8+4/8.11+.......+4/305.308
a,1/1.2 + 1/2.3 + 1/ 3.4+....+ 1/2017.2018
b, 2/3.5+ 2/ 5.7 + 2/7.9 +....+ 2/.91.99
Ai giúp mink tích cho!
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)
\(=\frac{1}{2}.\frac{64}{99}\)
\(=\frac{32}{99}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018
= 1 - 1/2018
= 2017/2018
Tính tổng
A=1/1.2+1/2.3+.......+1/49/50
B=2/3.5+2/5.7+..........+2/37.39
C=3/4.7+3/7.10+.........+3/37.39
Ai giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
= \(\left(1-\dfrac{1}{2}\right)\)+\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\)+...+\(\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
= \(\left(1-\dfrac{1}{50}\right)\) = \(\dfrac{49}{50}\)
Tính
S = 1/1.2+1/2.3+1/3.4+1/4.5
P= 1/1.3+1/3.5+1/5.7+1/7.9
s = 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
S=1 + (-1/2 +1/2)+...+(-1/4 + 1/4 ) +-1/5
S = 1 + 0 +0 +...+ 0 +-1/5
S= 1 + -1/5
S = 4/5
S=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5
S=1-1/5
S=4/5.
P=1/1.3+1/3.5+1/5.7+1/7.9
2P=2/1.3+2/3.5+2/5.7+2/7.9
2P=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9
2P=1-1/9=8/9
P=8/9:2
P=4/9.
Chac chan dung nha ban.k cho minh nhe
S=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5 =1/1-1/5 nhé P=1/2+(2/1.3+2/3.5+2/5.7+2/7.9)=1/2+(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9).=1/2+(1/1-1/9)
Tính N : 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4 + ...+ 1 phần 2005 . 2006
Tính M = 2 phần 1.3 + 2 phần 3.5 + 2 phần 5.7 + 2 phần 7.9 + 2 phần 2015 . 2017
( mình ko viết được số phần mong các bạn thông cảm nhé . CẢM ƠN CÁC BẠN VÌ ĐÃ GIẢI GIÚP MÌNH )
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
1) Tính 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13+2/13.15+2/1.2+2/2.3+2/3.4+2/4.5+...+2/9.10
2) Tìm x biết: (11/12+11/12.24+11/23.34+...+11/89.100)
1)
2/3.5+2/5.7+...+2/11.13+2/13.15+2/1.2+2/2.3+...+2/9.10
=(2/3.5+...2/13.15)+(2/1.2+...+2/9.10)
= (2/3-2/15)+ [2(1-1/10)]
=8/15+9/5
=7/3
2)
11/12+11/12.24+...+11/88.99
=11-1/9
=10/8/9