Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
Cho tổng A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(=\frac{1}{10}+\frac{90}{100}>1\)
\(A>1\left(đpcm\right)\)
Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A>1
1/10+1/11+……+1/99 > 1/20+1/20+…..+1/20 = 10/20 = 1/2
1/20+1/21+……+1/29 > 1/20+1/30+…..+1/30 = 10/30 = 1/3
1/30+1/31+……+1/39 > 1/40+1/40+…..+1/40 = 10/40= 1/4
=> 1/10 + 1/11 +...+ 1/39 > 1/2 + 1/3 + 1/4 = 13/12 > 1
Vậy A > 1
cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\) chứng tỏ A>1
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Từ đây ta suy ra
A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)
Cho \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(A=\frac{1}{10}+\frac{99}{100}=1\)
=> A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(A=\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+... +\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow A>1\)
Ta thấy:1/10;1/11;1/12;1/13;...;1/99>1/100
=)1/10+1/11+1/12+1/13+...+1/100>1/100+1/100+1/100+1/100..+1/100=1/100.100=1
Vậy A>1
Cho tổng C = \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng C >1
\(C=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41}{50}+\frac{50}{100}=\frac{33}{25}=1\frac{8}{25}>1\)
Ta thấy rằng mỗi số hạng trong tổng đều lớn hơn hoặc bằng \(\frac{1}{100}\)
=> \(C>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}x100=1\)
=> C>1 (Đpcm)
Chứng tỏ tổng sau lớn hơn 1
\(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\) ( 10 số hạng 1/20)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{30}.10=\frac{1}{3}\) ( 10 số hạng 1/30 )
.....................................
\(\frac{1}{90}+\frac{1}{91}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.10=\frac{1}{10}\). Và: \(\frac{1}{100}=\frac{1}{100}\)
Nên: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{100}>1\) (đpcm)
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{19}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}+\frac{10}{40}+\frac{1}{4}\)
\(=>\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Vậy \(C>1\)
Cho \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
Ta có:A=1/10+1/11+1/12+...+1/99+1/100
=1/10+(1/11+1/12+...+1/100)
>1/10+(1/100+1/100+1/100+...+1/100)
=1/10+90/100=1/10+9/10=1
Vậy A>1
Mình chúc bạn học tốt
Cho tổng A = \(\frac{1}{10}\)+ \(\frac{1}{11}\)+ \(\frac{1}{12}\)+ ............ + \(\frac{1}{99}\)+ \(\frac{1}{100}\)
Chứng tỏ rằng A > 1
Ta có: A = \(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}\right)\)
Nhận xét: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow A>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)
Vậy A > 1 (đpcm)