phan tich thanh nhan tu x^3-x
16x^3-12x^2+#x-7
phan tich da thuc thanh nhan tu
3x^3 +12x^2 +12x
tu de bai suy ra: 3x(x^3+4x+4)=3x(x+2)^2
Phan tich da thuc thanh nhan tu:
x3-42-12x+27
Lời giải:
$x^3-4x^2-12x+27$
$=(x^3+3x^2)-(7x^2+21x)+(9x+27)$
$=x^2(x+3)-7x(x+3)+9(x+3)$
$=(x+3)(x^2-7x+9)$
phan tich da thuc sau thanh nhan tu
x3-4x2+12x-27
\(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
8x^3-12x^2+6x-1
phan tich da thuc thanh nhan tu chung
cái này dễ mà
= (2x)^3-3(2x)^2*1+2*3x*1^2-1^3
= (2x-1)^3
phan tich da thuc thanh nhan tu
x^2+6x+9
10x-25-x^2
8x^3-1/8
8x^3+12x^2+6xy^2+y^3
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
Điệp viên 007 sai c
c, \(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
Phan tich thanh nhan tu 9x2-12x+4
phan tich 4x^4-12x^2+1 thanh cac nhan tu
(4a4-12a2+1)=(4a4-8a2+1)-4a2=(2a2-1)2-4a2=(2a2-2a-1)(2a2+2a-1)
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
phan tich da thuc thanh nhan tu :
a) x3-5x2+5x-5
b) x3+42+x-6
c) x3+ y3+6x2+12x +8
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)