Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Gia Phúc
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 12 2021 lúc 9:03

\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)

Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)

nguyễn minh quý
Xem chi tiết
Ngân
22 tháng 10 2017 lúc 9:50

vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1         =>a,b,c=3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2017 lúc 5:50

Ta có a 3   +   b 3   =   ( a   +   b ) ( a 2   –   a b   +   b 2 ) mà a = b + c nên

a 3   +   b 3   =   ( a   +   b ) ( a 2   –   a b   +   b 2 )     =   ( a   +   b ) [ ( b   +   c ) 2   –   ( b   +   c ) b   +   b 2 ]     =   ( a   +   b ) ( b 2   +   2 b c   +   c 2   –   b 2   –   b c   +   b 2 )     =   ( a   +   b ) ( b 2   +   b c   +   c 2 )

 

Tương tự ta có

a 3   +   c 3   =   ( a   +   c ) ( a 2   –   a c   +   c 2 )     =   ( a   +   c ) [ ( b   +   c ) 2   –   ( b   +   c ) c   +   c 2 ]     =   ( a   +   c ) ( b 2   +   2 b c   +   c 2   –   c 2   –   b c   +   c 2 )     =   ( a   +   c ) ( b 2   +   b c   +   c 2 )

 

Từ đó ta có

  a 3 + b 3 a 3 + c 3 = ( a + b ) ( b 2 + b c + c 2 ) ( a + c ) ( b 2 + b c + c 2 ) = a + b a + c

Đáp án cần chọn là: A

tran tien dat
Xem chi tiết
Trịnh Thị Nhung
8 tháng 7 2017 lúc 11:06

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

Băng băng
8 tháng 7 2017 lúc 11:13

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

trần huyền
Xem chi tiết
Trâm Lê
21 tháng 7 2015 lúc 20:39

a+b = c+d => a = c+d-b 
Thay vào ab+1 = cd 
=> (c+d-b).b+1 = cd 
<=> cb+db-cd+1-b2 = 0 
<=> b(c-b)-d(c-b)+1 = 0 
<=> (b-d)(c-b) = -1 
a,b,c,d,nguyên nên b-d và c-b nguyên 
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp: 
TH1: b-d = -1 và c-b = 1 
<=> d = b+1 và c = b+1 
=> c = d 
TH2: b-d = 1 và c-b = -1 
<=> d = b-1 và c = b-1 
=> c = d 
Vậy c = d.

Bảo Bình _ Aquarius
Xem chi tiết
phạm thị kim yến
13 tháng 8 2018 lúc 7:56

  a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

VRCT_Ran Love Shinichi
Xem chi tiết
Cao Minh Dũng
Xem chi tiết
Trần Đình Thiên
4 tháng 8 2023 lúc 9:11

17,18,19

kodo sinichi
4 tháng 8 2023 lúc 9:17

 ` 16<a<b`

`20>c>b`

`=>16<a<b<b<20/

`=> a= 17`

`b = 18`

`c = 19`

Khanh Khoi
4 tháng 8 2023 lúc 9:39

  16<�<�

20>�>�

`=>16<a<b<b<20/

=>�=17

�=18

�=19

Đào Thanh Huyền
Xem chi tiết
Third Lapat Ngamchaweng
Xem chi tiết