chứng minh rằng với a>b>0 thì \(\sqrt{a}-\sqrt{b}>\sqrt{a-b}\)
chứng minh rằng,với hai số a,b thỏa mãn a>b>0 thì \(\sqrt{a}\)-\(\sqrt{b}\)<\(\sqrt{a-b}\)
chứng minh rằng,với hai số a,b thỏa mãn a>b>0 thì \(\sqrt{a}-\sqrt{b}\)<\(\sqrt{a-b}\)
\(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\left(a>b>0\right)\)
\(\Leftrightarrow\left(\sqrt[]{a}-\sqrt[]{b}\right)^2< \left(\sqrt[]{a-b}\right)^2\)
\(\Leftrightarrow a+b-2\sqrt[]{ab}< a-b\)
\(\Leftrightarrow2\sqrt[]{ab}-2b>0\)
\(\Leftrightarrow2\sqrt[]{b}\left(\sqrt[]{a}-\sqrt[]{b}\right)>0\left(1\right)\)
mà \(a>b>0\)
Nên \(\left(1\right)\) luôn luôn đúng
Vậy \(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\)
Chứng minh rằng : Với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
từ a>b >0 <=> \(\sqrt{ab}>b\)<=> \(2b-2\sqrt{ba}< 0\)<=> a-a +b+b -\(2\sqrt{ab}\)< 0<=> a-\(2\sqrt{ab}\)+b < a- b hay \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
chứng minh rằng với a>b>0 thì \(\sqrt{a}-\sqrt{b}<\sqrt{a-b}\)
Ta sẽ chứng minh bằng biến đổi tương đương :))
Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< \left(\sqrt{a-b}\right)^2\Leftrightarrow a+b-2\sqrt{ab}< a-b\Leftrightarrow2b-2\sqrt{ab}< 0\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\left(1\right)\)
Vì \(b>0\Rightarrow\sqrt{b}>0\)và \(a>b\Rightarrow\sqrt{a}>\sqrt{b}\Rightarrow\sqrt{b}-\sqrt{a}< 0\)
nên từ đó suy ra \(\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\)luôn đúng.
Vậy (1) được chứng minh
Suy ra đpcm.
Ta có:
\(\left(\sqrt{ }a-\sqrt{ }b^{ }\right)^2-\left(\sqrt{a-b}\right)^2< 0\)
\(\Leftrightarrow a+b-2\sqrt{ab}-a-b< 0\)
\(\Leftrightarrow-2\sqrt{ab}< 0\)(luôn đúng với mọi a>b>0)
\(\Rightarrow\)điều phải chứng minh
Chứng minh rằng: Với mọi a > b > 0 thì \(\sqrt{a+b}+\sqrt{a-b}
\(\left(\sqrt{a-b}+\sqrt{a+b}\right)^2=a-b+a+b+2\sqrt{\left(a-b\right)\left(a+b\right)}=2a+2\sqrt{a^2-b^2}\)
\(\left(2\sqrt{a}\right)^2=4a=2a+2a\)
Đến đây chỉ việc đánh giá là xog
Chứng minh rằng:
\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)(với a>0 ; b>0)
\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\frac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)
\(=a-\sqrt{ab}+b-\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2\)
chứng minh rằng với a,b>0 thì
\(\sqrt{\frac{a}{b}}\)+\(\sqrt{\frac{b}{a}}\)+\(\frac{3\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a+b}}\)>6
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 300 giải nhanh nha đã có 241 người nhận rồi
OKuk
Chứng minh rằng nếu a,b>0 thì \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng BĐT cô-si, ta được:
\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)
Vậy....
Biến đổi tương đương ta được :
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )
chứng minh rằng,với a > b >0 thì \(\sqrt{a}\)-\(\sqrt{b}\)<\(\sqrt{a-b}\)