Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhím Tatoo
Xem chi tiết
Hùng Hoàng
Xem chi tiết
Lê Linh Hà
6 tháng 12 2015 lúc 22:49

đăng làm gì cho mỏi tay

hương giang
Xem chi tiết
Con Chim 7 Màu
14 tháng 2 2019 lúc 15:56

\(A=3.\frac{1}{2}\left(2.\frac{1}{3}+\frac{-1}{3}\right)\)

\(A=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

\(B=\frac{-1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\right)\)

\(B=\frac{-1}{2}.\frac{1}{2}=-\frac{1}{4}\)

nguyễn thị thúy nga
Xem chi tiết
Phùng Minh Quân
15 tháng 4 2018 lúc 13:18

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

nguyễn thị thúy nga
15 tháng 4 2018 lúc 13:00

tra loi nhah giup m nha

Phùng Minh Quân
15 tháng 4 2018 lúc 13:07

\(a)\) Đặt \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\) ta có : 

\(A>\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\)

Do từ \(41\) đến \(80\) có \(\left(80-41\right):1+1=40\) số nên có \(40\) phân số \(\frac{1}{80}\) suy ra : 

\(A>40.\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)

\(\Rightarrow\)\(A>\frac{1}{2}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{41}+\frac{1}{41}+\frac{1}{41}+...+\frac{1}{41}\)

Do từ \(41\) đến \(80\) có \(\left(80-41\right):1+1=40\) số nên có \(40\) phân số \(\frac{1}{41}\) suy ra : 

\(A< 40.\frac{1}{41}=\frac{40}{41}< 1\)

\(\Rightarrow\)\(A< 1\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(\frac{1}{2}< A< 1\) ( đpcm ) 

Vậy \(\frac{1}{2}< A< 1\)

Chúc bạn học tốt ~ 

Fenny
Xem chi tiết
Nguyễn Ngọc Anh Minh
25 tháng 9 2020 lúc 11:02

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:05

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

Miki Thảo
Xem chi tiết
Thao Nhi
21 tháng 8 2015 lúc 18:06

\(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)

\(3A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)

\(3A-A=\frac{1}{3}-\frac{1}{3^9}\)

\(2A=\frac{1}{3}.\left(1-\frac{1}{3^8}\right)\)

\(A=\frac{1}{6}.\left(1-\frac{1}{3^8}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)

\(\frac{1}{2}B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}\)

\(B-\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)

\(\frac{1}{2}B=1-\frac{1}{2^{n+1}}\)

\(B=2-\frac{2}{2^n.2}=2-\frac{1}{2^n}\)

Nguyễn Thị Hải Vân
Xem chi tiết
Đức Phạm
14 tháng 8 2017 lúc 13:48

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

Fan Inazuma Eleven
Xem chi tiết
Trần Bảo Vy
Xem chi tiết