Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thùy linh
Xem chi tiết
như ý phạm
27 tháng 3 2015 lúc 17:06

a, xét tứ giác  BCDE có:

góc BEC = 90 độ

góc BDC = 90 độ

=>góc BEC=BDC

=>tứ giác BCDE nt

xét tứ giác ADHE có:

góc AEH = 90 độ

góc ADH=90 độ

=>AEH+ADH=180

=>tứ giác ADHE nt

b,  vì tứ giác EDCB nt(cmt)

=>góc AED=ACB

xet tam giác AED và ACB  có:

góc EAD chung

góc AED=ACB

=>2 tam giác này đồng dạng vs nhau

=>AE/AC=AD/AB

=>AD.AC=AE.AB

C, ta có :góc xAB=ACB

mak góc góc ACB=AED(cmt)

=>góc xAB=AED

=>Ax//ED

Minh Thư Minh Hiền
26 tháng 11 2016 lúc 13:40

mong mọi người kb với mik nhé.yêu nhìu...!!!

Giang Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 19:33

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

phạm hoàng
Xem chi tiết
︵✿๖ۣۜTổng tài Lin_Chan...
Xem chi tiết
Nguyễn Diệp Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 18:42

a: Xét tứ giác ADHK có

\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)

nên \(\widehat{xAC}=\widehat{AKD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)

nên HKCM là tứ giác nội tiếp

=>\(\widehat{HKM}=\widehat{HCM}\)

mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)

nên \(\widehat{HKM}=\widehat{BAM}\)

mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)

nên \(\widehat{DKH}=\widehat{MKH}\)

=>\(\widehat{DKB}=\widehat{MKB}\)

=>KB là phân giác của góc DKM

Nguyễn Văn Nghị
1 tháng 1 lúc 20:38

a: Xét tứ giác ADHK có

ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC

ˆABC���^ là góc nội tiếp chắn cung AC

Do đó: ˆxAC=ˆABC���^=���^

mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)

nên ˆxAC=ˆAKD���^=���^

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥⊥BC tại M

Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800

nên HKCM là tứ giác nội tiếp

=>ˆHKM=ˆHCM���^=���^

mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)

nên ˆHKM=ˆBAM���^=���^

mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)

nên ˆDKH=ˆMKH���^=���^

=>ˆDKB=ˆMKB���^=���^

=>KB là phân giác của góc DKM

Nguyên Moi
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2023 lúc 22:33

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

mà góc A chung

nên ΔAED đồng dạng với ΔABC

b: góc xAC=góc ABC

góc ABC=góc ADE

=>góc xAC=góc ADE

=>Ax//DE

Lê Minh Ngọc
Xem chi tiết
nguyễn khắc  p h ú
21 tháng 3 2020 lúc 17:33

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

Khách vãng lai đã xóa
Hà Văn Chín
21 tháng 3 2020 lúc 17:37

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.

Khách vãng lai đã xóa
Đỗ Việt Hùng
Xem chi tiết
bui van trong
28 tháng 10 2021 lúc 13:53

tạm thời mình làm a trước nhá

nối d với O ta có OD=OB=OA=R 

=>tam giác AOD vuông

=>AD VUÔNG GÓC VỚI BM

Khách vãng lai đã xóa
Tien Nguyen
Xem chi tiết