không tính kết quả hãy so sánh a và b biết
`a= 202 xx 204`
` b = 203 xx 203`
cho :
A = 201/202 + 202/203 + 203/204
B= 201 + 202 +203 / 202 + 203 +204
so sánh A và B
ghi cả lời giải nha !!!
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)+ \(\frac{202}{202+203+204}\)+ \(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204 nên \(\frac{201}{202}\)>\(\frac{201}{202+203+204}\)(1)
Vì 203 < 202 + 203 + 204 nên \(\frac{202}{203}\)> \(\frac{202}{202+203+204}\)(2)
Vì 204 < 202 + 203 + 204 nên \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)(3)
Cộng vế vơi vế của (1) , (2) và (3)
=>\(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
Cho A=201/202+202/203+203/204 và B= 201+202+203/202+203+204
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)\(+\)\(\frac{202}{202+203+204}\)\(+\)\(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204
=> \(\frac{201}{202}\)> \(\frac{201}{202+203+204}\)( 1 )
Vì 203 < 202 + 203 + 204
=> \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)( 2 )
Vì 204 < 202 + 203 + 204
=> \(\frac{203}{204}\)> \(\frac{203}{202+203+204}\)( 3 )
Cộng vế với vế của ( 1 ), ( 2 ) và ( 3 )
=> \(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
So sánh 2 biểu thức sau:
a)A = 10^8+2/10^8-1 và B = 10^8/10^8-3
b)C=17^203+1/17^204+1 và D = 17^202+1/17^203+1
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Nhận thầy 108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)
=> A < B
b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)
17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)
Nhận thầy 17203 + 1 < 17204 + 1
=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)
=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\)
So sánh
a) 202^203 và 203^202
b) 1990^10+1990^9 và 1991^20
c) 11^1979 và 37^1320
a, 202203=(101.2)203
=101203.2203
=101202.2202.202
b, 203202=(101,5.2)202
=101,5202.2202
còn lại dễ
b, 199010+19909=19909.1990+19909=19909.(1990+1)=19909.1991
199120=199119.1991
=>199010+19909<199120
c, 111979<111980=(113)660=1331660
371320=(372)660=1369660
=>111979<371320
So sánh A , B mà ko cần tính kết quả :
A = 202 x 202
B = 200 x 204
to thay:
\(202.202>200.204\)
\(nen\)\(a>b\)
\(nha^{ }\)
A = 202 x 202
= (200 + 2) x 202 = 200 x 202 + 2 x 202
B = 200 x 204
= 200 x ( 202 + 2 ) = 200 x 202 + 200 x 2
Vì 2 x 202 > 200 x 2 \(\Rightarrow\)A > B
So sánh
202^203 và 203^202
Ta có :
202203 = 8 242 408101 ( 1 )
203202 = 42 209101 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 202203 < 203202
kết quả sau có tận cùng là
201 . 202 . 203 . 204 + 205 . 206 . 207 . 208 . 209
201 . 202 . 203 . 204 + 205 . 206 . 207 . 208 . 209
= (...1) . (....2) . (....3) (....4) + (...5) (....6) (.....7) (....8) (....9)
= 1.2.3.4 + 5.6.7.8.9
= (......24) + (....20)
= (.......44)
Vậy kết quả tận cùng là 4
201 . 202 . 203 . 204 + 205 . 206 . 207 . 208 . 209
= ( ...1 ) . ( ...2 ) . ( ...3 ) . ( ...4 ) + ( ...5 ) . ( ...6) . ( ...7 ) . ( ..8 ) . ( ..9 )
= ( ...24 ) + (...20 )
= ( ...4 ) + (... 0 )
= (...4 )
Vậy kết quả có số tận cùng là 4
a,A=45n+245 +n2 (n \(\in\) N*) Chứng tỏ rằng A không chia hết cho 10
b,So sánh M và N biết
M=\(\frac{3^{205}+28}{3^{203}+2}\); N=\(\frac{3^{204}+19}{3^{202}+1}\)
so sánh
M= 3^205+28/3^203+2
N= 3^204+19/3^202+1