Cho a,b,c thỏa mãn a/2016=b/2018=c/2020.Chứng minh (a-c)^2/4=(a-b)(b-c)
Cho a,b,c thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Cho a,b,c,d thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Lời giải:
Đặt \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}=t\Rightarrow a=2016t; b=2018t; c=2020t\)
Khi đó:
\(\frac{(a-c)^2}{4}=\frac{(2016t-2020t)^2}{4}=\frac{16t^2}{4}=4t^2(1)\)
\((a-b)(b-c)=(2016t-2018t)(2018t-2020t)=(-2t)(-2t)=4t^2(2)\)
Từ \((1);(2)\Rightarrow \frac{(a-c)^2}{4}=(a-b)(b-c)\) (đpcm)
HIHIHIHIHA . Các bạn giúp tớ với =))
Câu 1 : Cho a , b ,c là các số nguyên . Chứng minh rằng nếu \(a^{2016}+b^{2017}+c^{2018}\)chia hết cho 6 thì \(a^{2018}+b^{2019}+c^{2020}\)chia hết cho 6.
Câu 2 : Cho các số thực dương a,b,c thỏa mãn : \(a+b+c\le3\).Tìm GTNN của biểu thức :
\(M=\frac{a^2+4a+1}{a^2+a}+\frac{b^2+4b+1}{b^2+b}+\frac{c^2+4c+1}{c^2+c}\)
Cho a,b,c thỏa mãn a/2014=b/2015=c/2016
Chứng minh: 4(a-b)(b-c)=(c-a)^2
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\)
=>\(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2016k-2014k\right)^2=\left(2k\right)^2=4k^2\)
=>đpcm
cho 4 số a,b,c,d > o thỏa mãn a^4/b+c^4/d=1/b+d và a^2+c^2=1. chứng minh rằng a^2016/b^1006+c^2016/d^1008=2/(b+d)^1008
Cho a,b,c thỏa mãn $\frac{a}{2018}$ =$\frac{b}{2019}$ =$\frac{c}{2020}$
CMR:(a-c)^3=8 $(a-b)^{2}$ (b-c)
cho a,b,c thỏa mãn : a/2016=b=2017=c/2018
CMR: ( a-c )^3=8(a-b)^2(b-c)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Cho ba số thực a,b và c thỏa mãn a/2014=b/2015=c/2016
Chứng minh rằng : 4(a-b)(b-c) = (c-a)^2
đặt \(\frac{a}{2014}\)=\(\frac{b}{2015}\)=\(\frac{c}{2016}\)= K
---> a = 2014k, b=2015k , c=2016k
về trái : 4. ( 2014k-2015k). (2015k-2016k)=4. (-1k).(-1k)=4k2
Về phai: (2016k-2014k)2=(2k)2=4k2
---> ve trai = ve phai----> dpcm