Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Nguyen
Xem chi tiết
Dương Anh Tú
Xem chi tiết
Ngô Thị Quỳnh Mai
Xem chi tiết
NV Trí
Xem chi tiết
Akai Haruma
26 tháng 11 2017 lúc 22:17

Lời giải:

Đại số lớp 7

Qua M kẻ \(FG\perp AB,CD\) như hình vẽ

Ta thấy $AFGD$ và $BFGC$ có các góc đều là góc vuông nên chúng là hình chữ nhật. Do đó \(AF=DG; BF=CG\)

Áp dụng định lý Pitago cho các tam giác vuông ta có:

\(\left\{\begin{matrix} MA^2=MF^2+FA^2\\ MB^2=MF^2+FB^2\\ MC^2=MG^2+GC^2\\ MD^2=MG^2+GD^2\end{matrix}\right.\)

\(\Rightarrow MA^2+MC^2-(MB^2+MD^2)=FA^2+GC^2-(FB^2+GD^2)\)

Do \(AF=DG; BF=CG\Rightarrow AF^2=DG^2; BF^2=GC^2\)

\(\Rightarrow FA^2+GC^2-(FB^2+GD^2)=0\)

\(\Leftrightarrow MA^2+MC^2-(MB^2+MD^2)=0\)

\(\Leftrightarrow MA^2+MC^2=MB^2+MD^2\)

Ta có đpcm

Trần Yến Nhi
26 tháng 11 2017 lúc 22:18

Mình trả lời luôn câu b hi

undefined

Trần Lê Anh Quân
Xem chi tiết
Bùi Vương TP (Hacker Nin...
27 tháng 11 2018 lúc 16:03

A B C D M

Bài làm

Ta có: MA = MD ( hai tia đối nhau )

          MC =  MB ( hai tia đối nhau )

=> MA + MC = MD + MB

=> MA2+MC2=MD2+MB2 ( đpcm )

Vậy MA2+MC2=MD2+MB2

# Chúc bạn học tốt #

Chính Lê Hồng
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Nguyễn Quỳnh Trang
5 tháng 8 2018 lúc 14:18

Lời giải:

Đại số lớp 7

Qua M kẻ FGAB,CD

như hình vẽ

Ta thấy AFGD

và BFGC có các góc đều là góc vuông nên chúng là hình chữ nhật. Do đó AF=DG;BF=CG

Áp dụng định lý Pitago cho các tam giác vuông ta có:

MA2=MF2+FA2MB2=MF2+FB2MC2=MG2+GC2MD2=MG2+GD2

MA2+MC2−(MB2+MD2)=FA2+GC2−(FB2+GD2)

Do AF=DG;BF=CGAF2=DG2;BF2=GC2

FA2+GC2−(FB2+GD2)=0

MA2+MC2−(MB2+MD2)=0

MA2+MC2=MB2+MD2

Ta có đpcm

super xity
Xem chi tiết
Việt Hoàng
14 tháng 1 2018 lúc 22:23

M A B C D

Nguyen Sanchez
Xem chi tiết