Cho x,y thuộc Z thỏa mãn \(x^2+y^2\)chia hết cho 3.CMR x,y đều chia hết cho 3
Cho x,y thuộc Z thỏa mãn:
x2 + y2 chia hết cho 3
Chứng minh: x chia hết cho 3 và y chia hết cho 3
Cho x,y thuộc Z thỏa mãn:
x2 + y2 chia hết cho 3
Chứng minh: x chia hết cho 3 và y chia hết cho 3
cho 3 số x y z thỏa mãn x^3+y^3+z^3 chia hết cho 7 hãy cmr tồn tại 1 số x y z chia hết cho 7
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
cho x,y thuộc Z thỏa mãn: 3x+10y chia hết cho7. CMR :(x+y)(6x-29y) chia hết cho 49
Gọi ba số nguyên liên tiếp là n-1, n, n+1. tổng lập phương của chúng là:
A = (n-1)3 + n3 + (n+1)3
= n3 -3n2 +3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n = 3n( n2 -1) + 9n = 3 (n-1)n(n+1) + 9n 9
Cho x,y,z là các số nguyên thỏa mãn:\(x^2+y^2=z^2\)
a) CMR: trong 2 số x,y ít nhất có mộ số chia hết cho 3
b) chứng minh tchs x,y chia hết cho 12
Cho x , y , z thỏa mãn x2 + y2 = z2 . CMR :
a . Trong hai số x , y có ít nhất một số chia hết cho 3 .
b . Tích xy chia hết cho 12 .
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.
a)Có tìm được số chính phương nào mà tổng các chữ số của số đó là 2009 không.Vì sao?
b)Cho x,y thuộc z thỏa mãn x^2+y^2 chia hết cho 3 cmr x chia hết cho 3 và y chia hết cho 3
Giúp mình nha các bạn ^.^