Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Kim Ngân
Xem chi tiết
_ Yuki _ Dễ thương _
Xem chi tiết
Đặng Yến Linh
11 tháng 2 2017 lúc 21:48

45o

Võ Phú Minh
Xem chi tiết
ho ten day du
20 tháng 8 2020 lúc 21:39

xét tam giác QAC cân tại C (tự CM)

=> góc AQC = góc QAC 

=> ta có phương trình (180 độ - góc C)/2 = góc AQC (2)

tương tự ta có APB= (180 độ - góc B)/2 = góc APB (1)

từ (1) .(2) 

=> góc AQC +APB = (180 dộ - góc C )/2 + (180 độ - góc B)/2 (3)

mà góc B+góc C là 90 độ ( do tam giác ABC vuông tại A )

=.APQ+AQP=135 độ (giải phương trình 3)

=> góc QAP= 45 độ

Khách vãng lai đã xóa
Võ Phú Minh
21 tháng 8 2020 lúc 7:10

đoạn cuối giải phương trình 3 mik ch hiểu bn giải thích rõ đc ko mik ms hc lớp 7 à

Khách vãng lai đã xóa
Trần Dương Nguyên Bình
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 14:17

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

Tam Le
26 tháng 1 2016 lúc 14:32

bạn lên online math mà hỏi các bạn ấy ngu lắm

_ Yuki _ Dễ thương _
Xem chi tiết
Đặng Yến Linh
3 tháng 3 2017 lúc 9:32

BA=BP nhe cj, bài này phynit chỉ có khóc, violympic v14, mk làm r

Linh Giang Vương
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 13:35

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

Anh Quỳnh
Xem chi tiết
nhunhugiahan
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
18 tháng 2 2020 lúc 23:39

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

Khách vãng lai đã xóa
Nguyễn lan anh
18 tháng 2 2020 lúc 23:53

bài này dễ sao không biết

Khách vãng lai đã xóa
nameless
19 tháng 2 2020 lúc 0:52

Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
      ∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
    Mà AC + CE = AE
          AB = AC (GT)
          BD = CE (GT)
=> AD = AE 
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o 
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù) 
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
      ∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....

Khách vãng lai đã xóa